
h5py Documentation
Release 3.10.0

Andrew Collette and contributors

Oct 09, 2023

CONTENTS

1 Where to start 3

2 Other resources 5

3 Introductory info 7

4 High-level API reference 15

5 Advanced topics 45

6 Meta-info about the h5py project 67

Index 111

i

ii

h5py Documentation, Release 3.10.0

The h5py package is a Pythonic interface to the HDF5 binary data format.

HDF5 lets you store huge amounts of numerical data, and easily manipulate that data from NumPy. For example, you
can slice into multi-terabyte datasets stored on disk, as if they were real NumPy arrays. Thousands of datasets can be
stored in a single file, categorized and tagged however you want.

CONTENTS 1

https://hdfgroup.org

h5py Documentation, Release 3.10.0

2 CONTENTS

CHAPTER

ONE

WHERE TO START

• Quick-start guide

• Installation

3

h5py Documentation, Release 3.10.0

4 Chapter 1. Where to start

CHAPTER

TWO

OTHER RESOURCES

• Python and HDF5 O’Reilly book

• Ask questions on the HDF forum

• GitHub project

5

https://shop.oreilly.com/product/0636920030249.do
https://forum.hdfgroup.org/c/hdf-tools/h5py
https://github.com/h5py/h5py

h5py Documentation, Release 3.10.0

6 Chapter 2. Other resources

CHAPTER

THREE

INTRODUCTORY INFO

3.1 Quick Start Guide

3.1.1 Install

With Anaconda or Miniconda:

conda install h5py

If there are wheels for your platform (mac, linux, windows on x86) and you do not need MPI you can install h5py via
pip:

pip install h5py

With Enthought Canopy, use the GUI package manager or:

enpkg h5py

To install from source see Installation.

3.1.2 Core concepts

An HDF5 file is a container for two kinds of objects: datasets, which are array-like collections of data, and groups,
which are folder-like containers that hold datasets and other groups. The most fundamental thing to remember when
using h5py is:

Groups work like dictionaries, and datasets work like NumPy arrays

Suppose someone has sent you a HDF5 file, mytestfile.hdf5. (To create this file, read Appendix: Creating a file.)
The very first thing you’ll need to do is to open the file for reading:

>>> import h5py
>>> f = h5py.File('mytestfile.hdf5', 'r')

The File object is your starting point. What is stored in this file? Remember h5py.File acts like a Python dictionary,
thus we can check the keys,

>>> list(f.keys())
['mydataset']

Based on our observation, there is one data set, mydataset in the file. Let us examine the data set as a Dataset object

7

http://continuum.io/downloads
http://conda.pydata.org/miniconda.html
https://www.enthought.com/products/canopy/

h5py Documentation, Release 3.10.0

>>> dset = f['mydataset']

The object we obtained isn’t an array, but an HDF5 dataset. Like NumPy arrays, datasets have both a shape and a data
type:

>>> dset.shape
(100,)
>>> dset.dtype
dtype('int32')

They also support array-style slicing. This is how you read and write data from a dataset in the file:

>>> dset[...] = np.arange(100)
>>> dset[0]
0
>>> dset[10]
10
>>> dset[0:100:10]
array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

For more, see File Objects and Datasets.

Appendix: Creating a file

At this point, you may wonder how mytestdata.hdf5 is created. We can create a file by setting the mode to w when
the File object is initialized. Some other modes are a (for read/write/create access), and r+ (for read/write access). A
full list of file access modes and their meanings is at File Objects.

>>> import h5py
>>> import numpy as np
>>> f = h5py.File("mytestfile.hdf5", "w")

The File object has a couple of methods which look interesting. One of them is create_dataset, which as the name
suggests, creates a data set of given shape and dtype

>>> dset = f.create_dataset("mydataset", (100,), dtype='i')

The File object is a context manager; so the following code works too

>>> import h5py
>>> import numpy as np
>>> with h5py.File("mytestfile.hdf5", "w") as f:
>>> dset = f.create_dataset("mydataset", (100,), dtype='i')

8 Chapter 3. Introductory info

h5py Documentation, Release 3.10.0

3.1.3 Groups and hierarchical organization

“HDF” stands for “Hierarchical Data Format”. Every object in an HDF5 file has a name, and they’re arranged in a
POSIX-style hierarchy with /-separators:

>>> dset.name
'/mydataset'

The “folders” in this system are called groups. The File object we created is itself a group, in this case the root group,
named /:

>>> f.name
'/'

Creating a subgroup is accomplished via the aptly-named create_group. But we need to open the file in the “append”
mode first (Read/write if exists, create otherwise)

>>> f = h5py.File('mydataset.hdf5', 'a')
>>> grp = f.create_group("subgroup")

All Group objects also have the create_* methods like File:

>>> dset2 = grp.create_dataset("another_dataset", (50,), dtype='f')
>>> dset2.name
'/subgroup/another_dataset'

By the way, you don’t have to create all the intermediate groups manually. Specifying a full path works just fine:

>>> dset3 = f.create_dataset('subgroup2/dataset_three', (10,), dtype='i')
>>> dset3.name
'/subgroup2/dataset_three'

Groups support most of the Python dictionary-style interface. You retrieve objects in the file using the item-retrieval
syntax:

>>> dataset_three = f['subgroup2/dataset_three']

Iterating over a group provides the names of its members:

>>> for name in f:
... print(name)
mydataset
subgroup
subgroup2

Membership testing also uses names:

>>> "mydataset" in f
True
>>> "somethingelse" in f
False

You can even use full path names:

>>> "subgroup/another_dataset" in f
True

3.1. Quick Start Guide 9

h5py Documentation, Release 3.10.0

There are also the familiar keys(), values(), items() and iter() methods, as well as get().

Since iterating over a group only yields its directly-attached members, iterating over an entire file is accomplished with
the Group methods visit() and visititems(), which take a callable:

>>> def printname(name):
... print(name)
>>> f.visit(printname)
mydataset
subgroup
subgroup/another_dataset
subgroup2
subgroup2/dataset_three

For more, see Groups.

3.1.4 Attributes

One of the best features of HDF5 is that you can store metadata right next to the data it describes. All groups and
datasets support attached named bits of data called attributes.

Attributes are accessed through the attrs proxy object, which again implements the dictionary interface:

>>> dset.attrs['temperature'] = 99.5
>>> dset.attrs['temperature']
99.5
>>> 'temperature' in dset.attrs
True

For more, see Attributes.

3.2 Installation

It is highly recommended that you use a pre-built version of h5py, either from a Python Distribution, an OS-specific
package manager, or a pre-built wheel from PyPI.

Be aware however that most pre-built versions lack MPI support, and that they are built against a specific version of
HDF5. If you require MPI support, or newer HDF5 features, you will need to build from source.

After installing h5py, you should run the tests to be sure that everything was installed correctly. This can be done in
the python interpreter via:

import h5py
h5py.run_tests()

10 Chapter 3. Introductory info

h5py Documentation, Release 3.10.0

3.2.1 Pre-built installation (recommended)

Pre-build h5py can be installed via many Python Distributions, OS-specific package managers, or via h5py wheels.

Python Distributions

If you do not already use a Python Distribution, we recommend either Anaconda/Miniconda or Enthought Canopy, both
of which support most versions of Microsoft Windows, OSX/MacOS, and a variety of Linux Distributions. Installation
of h5py can be done on the command line via:

$ conda install h5py

for Anaconda/MiniConda, and via:

$ enpkg h5py

for Canopy.

Wheels

If you have an existing Python installation (e.g. a python.org download, or one that comes with your OS), then on
Windows, MacOS/OSX, and Linux on Intel computers, pre-built h5py wheels can be installed via pip from PyPI:

$ pip install h5py

Additionally, for Windows users, Chris Gohlke provides third-party wheels which use Intel’s MKL.

OS-Specific Package Managers

On OSX/MacOS, h5py can be installed via Homebrew, Macports, or Fink.

The current state of h5py in various Linux Distributions can be seen at https://pkgs.org/download/python-h5py, and
can be installed via the package manager.

As far as the h5py developers know, none of the Windows package managers (e.g. Chocolatey, nuget) have h5py
included, however they may assist in installing h5py’s requirements when building from source.

3.2.2 Source installation

To install h5py from source, you need:

• A supported Python version with development headers

• HDF5 1.10.4 or newer with development headers

– HDF5 versions newer than the h5py version you’re using might not work.

– Odd minor versions of HDF5 (e.g. 1.13) are experimental, and might not work. Use a ‘maintenance’
version like 1.12.x if possible.

– If you need support for older HDF5 versions, h5py up to version 3.9 supported HDF5 1.8.4 and above.

• A C compiler

3.2. Installation 11

http://continuum.io/downloads
http://conda.pydata.org/miniconda.html
https://www.enthought.com/products/canopy/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
https://brew.sh/
https://www.macports.org/
http://finkproject.org/
https://pkgs.org/download/python-h5py
https://chocolatey.org/
https://www.nuget.org/

h5py Documentation, Release 3.10.0

On Unix platforms, you also need pkg-config unless you explicitly specify a path for HDF5 as described in Custom
installation.

There are notes below on installing HDF5, Python and a C compiler on different platforms.

Building h5py also requires several Python packages, but in most cases pip will automatically install these in a build
environment for you, so you don’t need to deal with them manually. See Development installation for a list.

The actual installation of h5py should be done via:

$ pip install --no-binary=h5py h5py

or, from a tarball or git checkout:

$ pip install -v .

Development installation

When modifying h5py, you often want to reinstall it quickly to test your changes. To benefit from caching and use
NumPy & Cython from your existing Python environment, run:

$ H5PY_SETUP_REQUIRES=0 python3 setup.py build
$ python3 -m pip install . --no-build-isolation

For convenience, these commands are also in a script dev-install.sh in the h5py git repository.

This skips setting up a build environment, so you should have already installed Cython, NumPy, pkgconfig (a Python
interface to pkg-config) and mpi4py (if you want MPI integration - see Building against Parallel HDF5). See setup.
py for minimum versions.

This will normally rebuild Cython files automatically when they change, but sometimes it may be necessary to force a
full rebuild. The easiest way to achieve this is to discard everything but the code committed to git. In the root of your
git checkout, run:

$ git clean -xfd

Then build h5py again as above.

Source installation on OSX/MacOS

HDF5 and Python are most likely in your package manager (e.g. Homebrew, Macports, or Fink). Be sure to install the
development headers, as sometimes they are not included in the main package.

XCode comes with a C compiler (clang), and your package manager will likely have other C compilers for you to install.

Source installation on Linux/Other Unix

HDF5 and Python are most likely in your package manager. A C compiler almost definitely is, usually there is some
kind of metapackage to install the default build tools, e.g. build-essential, which should be sufficient for our needs.
Make sure that that you have the development headers, as they are usually not installed by default. They can usually be
found in python-dev or similar and libhdf5-dev or similar.

12 Chapter 3. Introductory info

https://brew.sh/
https://www.macports.org/
http://finkproject.org/

h5py Documentation, Release 3.10.0

Source installation on Windows

Installing from source on Windows is a much more difficult prospect than installing from source on other OSs, as not
only are you likely to need to compile HDF5 from source, everything must be built with the correct version of Visual
Studio. Additional patches are also needed to HDF5 to get HDF5 and Python to work together.

We recommend examining the appveyor build scripts, and using those to build and install HDF5 and h5py.

Downstream packagers

If you are building h5py for another packaging system - e.g. Linux distros or packaging aimed at HPC users - you
probably want to satisfy build dependencies from your packaging system. To build without automatically fetching
dependencies, use a command like:

H5PY_SETUP_REQUIRES=0 pip install . --no-deps --no-build-isolation

Depending on your packaging system, you may need to use the --prefix or --root options to control where files get
installed.

h5py’s Python packaging has build dependencies on the oldest compatible versions of NumPy and mpi4py. You can
build with newer versions of these, but the resulting h5py binaries will only work with the NumPy & mpi4py versions
they were built with (or newer). Mpi4py is an optional dependency, only required for Parallel HDF5 features.

You should also look at the build options under Custom installation.

3.2.3 Custom installation

Important: Remember that pip installs wheels by default. To perform a custom installation with pip, you should use:

$ pip install --no-binary=h5py h5py

or build from a git checkout or downloaded tarball to avoid getting a pre-built version of h5py.

You can specify build options for h5py as environment variables when you build it from source:

$ HDF5_DIR=/path/to/hdf5 pip install --no-binary=h5py h5py
$ HDF5_VERSION=X.Y.Z pip install --no-binary=h5py h5py
$ CC="mpicc" HDF5_MPI="ON" HDF5_DIR=/path/to/parallel-hdf5 pip install --no-binary=h5py␣
→˓h5py

The supported build options are:

• To specify where to find HDF5, use one of these options:

– HDF5_LIBDIR and HDF5_INCLUDEDIR: the directory containing the compiled HDF5 libraries and the di-
rectory containing the C header files, respectively.

– HDF5_DIR: a shortcut for common installations, a directory with lib and include subdirectories contain-
ing compiled libraries and C headers.

– HDF5_PKGCONFIG_NAME: A name to query pkg-config for. If none of these options are specified, h5py
will query pkg-config by default for hdf5, or hdf5-openmpi if building with MPI support.

• HDF5_MPI=ON to build with MPI integration - see Building against Parallel HDF5.

3.2. Installation 13

h5py Documentation, Release 3.10.0

• HDF5_VERSION to force a specified HDF5 version. In most cases, you don’t need to set this; the version number
will be detected from the HDF5 library.

• H5PY_SYSTEM_LZF=1 to build the bundled LZF compression filter (see Filter pipeline) against an external LZF
library, rather than using the bundled LZF C code.

3.2.4 Building against Parallel HDF5

If you just want to build with mpicc, and don’t care about using Parallel HDF5 features in h5py itself:

$ export CC=mpicc
$ pip install --no-binary=h5py h5py

If you want access to the full Parallel HDF5 feature set in h5py (Parallel HDF5), you will further have to build in MPI
mode. This can be done by setting the HDF5_MPI environment variable:

$ export CC=mpicc
$ export HDF5_MPI="ON"
$ pip install --no-binary=h5py h5py

You will need a shared-library build of Parallel HDF5 as well, i.e. built with ./configure --enable-shared
--enable-parallel.

On Windows, MS-MPI is usually used which does not have an mpicc wrapper. Instead, you may use the H5PY_MSMPI
environment variable to ON in order to query the system for MS-MPI’s information.

14 Chapter 3. Introductory info

CHAPTER

FOUR

HIGH-LEVEL API REFERENCE

4.1 File Objects

File objects serve as your entry point into the world of HDF5. In addition to the File-specific capabilities listed here,
every File instance is also an HDF5 group representing the root group of the file.

4.1.1 Opening & creating files

HDF5 files work generally like standard Python file objects. They support standard modes like r/w/a, and should be
closed when they are no longer in use. However, there is obviously no concept of “text” vs “binary” mode.

>>> f = h5py.File('myfile.hdf5','r')

The file name may be a byte string or unicode string. Valid modes are:

r Readonly, file must exist (default)
r+ Read/write, file must exist
w Create file, truncate if exists
w- or x Create file, fail if exists
a Read/write if exists, create otherwise

Changed in version 3.0: Files are now opened read-only by default. Earlier versions of h5py would pick different modes
depending on the presence and permissions of the file.

4.1.2 File drivers

HDF5 ships with a variety of different low-level drivers, which map the logical HDF5 address space to different storage
mechanisms. You can specify which driver you want to use when the file is opened:

>>> f = h5py.File('myfile.hdf5', driver=<driver name>, <driver_kwds>)

For example, the HDF5 “core” driver can be used to create a purely in-memory HDF5 file, optionally written out to
disk when it is closed. Here’s a list of supported drivers and their options:

None Strongly recommended. Use the standard HDF5 driver appropriate for the current platform. On
UNIX, this is the H5FD_SEC2 driver; on Windows, it is H5FD_WINDOWS.

‘sec2’ Unbuffered, optimized I/O using standard POSIX functions.

‘stdio’ Buffered I/O using functions from stdio.h.

15

h5py Documentation, Release 3.10.0

‘core’ Store and manipulate the data in memory, and optionally write it back out when the file is closed.
Using this with an existing file and a reading mode will read the entire file into memory. Keywords:

backing_store: If True (default), save changes to the real file at the specified path on close() or
flush(). If False, any changes are discarded when the file is closed.

block_size: Increment (in bytes) by which memory is extended. Default is 64k.

‘family’ Store the file on disk as a series of fixed-length chunks. Useful if the file system doesn’t allow
large files. Note: the filename you provide must contain a printf-style integer format code (e.g. %d”),
which will be replaced by the file sequence number. Keywords:

memb_size: Maximum file size (default is 2**31-1).

‘fileobj’ Store the data in a Python file-like object; see below. This is the default if a file-like object is
passed to File.

‘split’ Splits the meta data and raw data into separate files. Keywords:

meta_ext: Metadata filename extension. Default is ‘-m.h5’.

raw_ext: Raw data filename extension. Default is ‘-r.h5’.

‘ros3’ Enables read-only access to HDF5 files in the AWS S3 or S3-compatible object stores. HDF5 file
name must be one of http://, https://, or s3:// resource location. An s3:// location will be translated
into an AWS path-style location by h5py. Keywords:

aws_region: AWS region of the S3 bucket with the file, e.g. b"us-east-1". Default is b''. Re-
quired for s3:// locations.

secret_id: AWS access key ID. Default is b''.

secret_key: AWS secret access key. Default is b''.

session_token: AWS temporary session token. Default is b''.’ Must be used together with tempo-
rary secret_id and secret_key. Available from HDF5 1.14.2.

The argument values must be bytes objects. Arguments aws_region, secret_id, and secret_key are
required to activate AWS authentication.

Note: Pre-built h5py packages on PyPI do not include ros3 driver support. If you want this feature,
you could use packages from conda-forge, or build h5py from source against an HDF5 build with
ros3. Alternatively, use the file-like object support with a package like s3fs.

4.1.3 Python file-like objects

New in version 2.9.

The first argument to File may be a Python file-like object, such as an io.BytesIO or tempfile.TemporaryFile
instance. This is a convenient way to create temporary HDF5 files, e.g. for testing or to send over the network.

The file-like object must be open for binary I/O, and must have these methods: read() (or readinto()), write(),
seek(), tell(), truncate() and flush().

>>> tf = tempfile.TemporaryFile()
>>> f = h5py.File(tf, 'w')

Accessing the File instance after the underlying file object has been closed will result in undefined behaviour.

16 Chapter 4. High-level API reference

https://docs.aws.amazon.com/AmazonS3/latest/userguide/VirtualHosting.html#path-style-access

h5py Documentation, Release 3.10.0

When using an in-memory object such as io.BytesIO, the data written will take up space in memory. If you want to
write large amounts of data, a better option may be to store temporary data on disk using the functions in tempfile.

"""Create an HDF5 file in memory and retrieve the raw bytes

This could be used, for instance, in a server producing small HDF5
files on demand.
"""
import io
import h5py

bio = io.BytesIO()
with h5py.File(bio, 'w') as f:

f['dataset'] = range(10)

data = bio.getvalue() # data is a regular Python bytes object.
print("Total size:", len(data))
print("First bytes:", data[:10])

Warning: When using a Python file-like object for an HDF5 file, make sure to close the HDF5 file before closing
the file object it’s wrapping. If there is an error while trying to close the HDF5 file, segfaults may occur.

Warning: When using a Python file-like object, using service threads to implement the file-like API can lead to
process deadlocks.

h5py serializes access to low-level hdf5 functions via a global lock. This lock is held when the file-like methods are
called and is required to delete/deallocate h5py objects. Thus, if cyclic garbage collection is triggered on a service
thread the program will deadlock. The service thread can not continue until it acquires the lock, and the thread
holding the lock will not release it until the service thread completes its work.

If possible, avoid creating circular references (either via weakrefs or manually breaking the cycles) that keep h5py
objects alive. If this is not possible, manually triggering a garbage collection from the correct thread or temporarily
disabling garbage collection may help.

Note: Using a Python file-like object for HDF5 is internally more complex, as the HDF5 C code calls back into Python
to access it. It inevitably has more ways to go wrong, and the failures may be less clear when it does. For some common
use cases, you can easily avoid it:

• To create a file in memory and never write it to disk, use the 'core' driver with mode='w',
backing_store=False (see File drivers).

• To use a temporary file securely, make a temporary directory and open a file path inside it.

4.1. File Objects 17

h5py Documentation, Release 3.10.0

4.1.4 Version bounding

HDF5 has been evolving for many years now. By default, the library will write objects in the most compatible fashion
possible, so that older versions will still be able to read files generated by modern programs. However, there can be
feature or performance advantages if you are willing to forgo a certain level of backwards compatibility. By using the
“libver” option to File, you can specify the minimum and maximum sophistication of these structures:

>>> f = h5py.File('name.hdf5', libver='earliest') # most compatible
>>> f = h5py.File('name.hdf5', libver='latest') # most modern

Here “latest” means that HDF5 will always use the newest version of these structures without particular concern for
backwards compatibility. The “earliest” option means that HDF5 will make a best effort to be backwards compatible.

The default is “earliest”.

Specifying version bounds has changed from HDF5 version 1.10.2. There are two new compatibility levels: v108 (for
HDF5 1.8) and v110 (for HDF5 1.10). This change enables, for example, something like this:

>>> f = h5py.File('name.hdf5', libver=('earliest', 'v108'))

which enforces full backward compatibility up to HDF5 1.8. Using any HDF5 feature that requires a newer format will
raise an error.

latest is now an alias to another bound label that represents the latest version. Because of this, the File.libver property
will not use latest in its output for HDF5 1.10.2 or later.

4.1.5 Closing files

If you call File.close(), or leave a with h5py.File(...) block, the file will be closed and any objects (such
as groups or datasets) you have from that file will become unusable. This is equivalent to what HDF5 calls ‘strong’
closing.

If a file object goes out of scope in your Python code, the file will only be closed when there are no remaining objects
belonging to it. This is what HDF5 calls ‘weak’ closing.

with h5py.File('f1.h5', 'r') as f1:
ds = f1['dataset']

ERROR - can't access dataset, because f1 is closed:
ds[0]

def get_dataset():
f2 = h5py.File('f2.h5', 'r')
return f2['dataset']

ds = get_dataset()

OK - f2 is out of scope, but the dataset reference keeps it open:
ds[0]

del ds # Now f2.h5 will be closed

18 Chapter 4. High-level API reference

h5py Documentation, Release 3.10.0

4.1.6 User block

HDF5 allows the user to insert arbitrary data at the beginning of the file, in a reserved space called the user block.
The length of the user block must be specified when the file is created. It can be either zero (the default) or a power
of two greater than or equal to 512. You can specify the size of the user block when creating a new file, via the
userblock_size keyword to File; the userblock size of an open file can likewise be queried through the File.
userblock_size property.

Modifying the user block on an open file is not supported; this is a limitation of the HDF5 library. However, once the
file is closed you are free to read and write data at the start of the file, provided your modifications don’t leave the user
block region.

4.1.7 Filenames on different systems

Different operating systems (and different file systems) store filenames with different encodings. Additionally, in Python
there are at least two different representations of filenames, as encoded bytes or as a Unicode string (str on Python
3).

h5py’s high-level interfaces always return filenames as str, e.g. File.filename. h5py accepts filenames as either
str or bytes. In most cases, using Unicode (str) paths is preferred, but there are some caveats.

Note: HDF5 handles filenames as bytes (C char *), and the h5py Low-Level API matches this.

macOS (OSX)

macOS is the simplest system to deal with, it only accepts UTF-8, so using Unicode paths will just work (and should
be preferred).

Linux (and non-macOS Unix)

Filenames on Unix-like systems are natively bytes. By convention, the locale encoding is used to convert to and from
unicode; on most modern systems this will be UTF-8 by default (especially since Python 3.7, with PEP 538).

Passing Unicode paths will mostly work, and Unicode paths from system functions like os.listdir() should always
work. But if there are filenames that aren’t in the expected encoding (e.g. on a network filesystem or a removable drive,
or because something is misconfigured), you may want to handle them as bytes.

Windows

Windows systems natively handle filenames as Unicode, and with HDF5 1.10.6 and above filenames passed to h5py as
bytes will be used as UTF-8 encoded text, regardless of system configuration.

HDF5 1.10.5 and below could only use filenames with characters from the active code page, e.g. Windows-1252 on
many systems configured for European languages. This limitation applies whether you use str or bytes with h5py.

4.1. File Objects 19

https://www.python.org/dev/peps/pep-0538
https://en.wikipedia.org/wiki/Windows-1252

h5py Documentation, Release 3.10.0

4.1.8 Chunk cache

Chunked storage allows datasets to be stored on disk in separate pieces. When a part of any one of these pieces is
needed, the entire chunk is read into memory before the requested part is copied to the user’s buffer. To the extent
possible those chunks are cached in memory, so that if the user requests a different part of a chunk that has already
been read, the data can be copied directly from memory rather than reading the file again. The details of a given
dataset’s chunks are controlled when creating the dataset, but it is possible to adjust the behavior of the chunk cache
when opening the file.

The parameters controlling this behavior are prefixed by rdcc, for raw data chunk cache. They apply to all datasets
unless specifically changed for each one.

• rdcc_nbytes sets the total size (measured in bytes) of the raw data chunk cache for each dataset. The default
size is 1 MiB. This should be set to the size of each chunk times the number of chunks that are likely to be needed
in cache.

• rdcc_w0 sets the policy for chunks to be removed from the cache when more space is needed. If the value is set
to 0, then the library will always evict the least recently used chunk in cache. If the value is set to 1, the library
will always evict the least recently used chunk which has been fully read or written, and if none have been fully
read or written, it will evict the least recently used chunk. If the value is between 0 and 1, the behavior will be a
blend of the two. Therefore, if the application will access the same data more than once, the value should be set
closer to 0, and if the application does not, the value should be set closer to 1.

• rdcc_nslots is the number of chunk slots in the cache for each dataset. In order to allow the chunks to be
looked up quickly in cache, each chunk is assigned a unique hash value that is used to look up the chunk. The
cache contains a simple array of pointers to chunks, which is called a hash table. A chunk’s hash value is simply
the index into the hash table of the pointer to that chunk. While the pointer at this location might instead point
to a different chunk or to nothing at all, no other locations in the hash table can contain a pointer to the chunk in
question. Therefore, the library only has to check this one location in the hash table to tell if a chunk is in cache
or not. This also means that if two or more chunks share the same hash value, then only one of those chunks
can be in the cache at the same time. When a chunk is brought into cache and another chunk with the same hash
value is already in cache, the second chunk must be evicted first. Therefore it is very important to make sure that
the size of the hash table (which is determined by the rdcc_nslots parameter) is large enough to minimize the
number of hash value collisions. Due to the hashing strategy, this value should ideally be a prime number. As a
rule of thumb, this value should be at least 10 times the number of chunks that can fit in rdcc_nbytes bytes. For
maximum performance, this value should be set approximately 100 times that number of chunks. The default
value is 521.

Chunks and caching are described in greater detail in the HDF5 documentation.

4.1.9 Data alignment

When creating datasets within files, it may be advantageous to align the offset within the file itself. This can help
optimize read and write times if the data become aligned with the underlying hardware, or may help with parallelism
with MPI. Unfortunately, aligning small variables to large blocks can leave alot of empty space in a file. To this
effect, application developers are left with two options to tune the alignment of data within their file. The two variables
alignment_threshold and alignment_interval in the File constructor help control the threshold in bytes where
the data alignment policy takes effect and the alignment in bytes within the file. The alignment is measured from the
end of the user block.

For more information, see the official HDF5 documentation H5P_SET_ALIGNMENT.

20 Chapter 4. High-level API reference

https://portal.hdfgroup.org/display/HDF5/Chunking+in+HDF5
https://portal.hdfgroup.org/display/HDF5/H5P_SET_ALIGNMENT

h5py Documentation, Release 3.10.0

4.1.10 Meta block size

Space for metadata is allocated in blocks within the HDF5 file. The argument meta_block_size of the File con-
structor sets the minimum size of these blocks. Setting a large value can consolidate metadata into a small number of
regions. Setting a small value can reduce the overall file size, especially in combination with the libver option. This
controls how the overall data and metadata are laid out within the file.

For more information, see the offical HDF5 documentation H5P_SET_META_BLOCK_SIZE.

4.1.11 Reference

Note: Unlike Python file objects, the attribute File.name gives the HDF5 name of the root group, “/”. To access the
on-disk name, use File.filename.

class h5py.File(name, mode='r', driver=None, libver=None, userblock_size=None, swmr=False,
rdcc_nslots=None, rdcc_nbytes=None, rdcc_w0=None, track_order=None, fs_strategy=None,
fs_persist=False, fs_threshold=1, fs_page_size=None, page_buf_size=None, min_meta_keep=0,
min_raw_keep=0, locking=None, alignment_threshold=1, alignment_interval=1, **kwds)

Open or create a new file.

Note that in addition to the File-specific methods and properties listed below, File objects inherit the full
interface of Group.

Parameters

• name – Name of file (bytes or str), or an instance of h5f.FileID to bind to an existing file
identifier, or a file-like object (see Python file-like objects).

• mode – Mode in which to open file; one of (“w”, “r”, “r+”, “a”, “w-“). See Opening &
creating files.

• driver – File driver to use; see File drivers.

• libver – Compatibility bounds; see Version bounding.

• userblock_size – Size (in bytes) of the user block. If nonzero, must be a power of 2 and
at least 512. See User block.

• swmr – If True open the file in single-writer-multiple-reader mode. Only used when
mode=”r”.

• rdcc_nbytes – Total size of the raw data chunk cache in bytes. The default size is 10242
(1 MiB) per dataset.

• rdcc_w0 – Chunk preemption policy for all datasets. Default value is 0.75.

• rdcc_nslots – Number of chunk slots in the raw data chunk cache for this file. Default
value is 521.

• track_order – Track dataset/group/attribute creation order under root group if True. De-
fault is h5.get_config().track_order.

• fs_strategy – The file space handling strategy to be used. Only allowed when creating a
new file. One of “fsm”, “page”, “aggregate”, “none”, or None (to use the HDF5 default).

• fs_persist – A boolean to indicate whether free space should be persistent or not. Only
allowed when creating a new file. The default is False.

• fs_page_size – File space page size in bytes. Only use when fs_strategy=”page”. If None
use the HDF5 default (4096 bytes).

4.1. File Objects 21

https://portal.hdfgroup.org/display/HDF5/H5P_SET_META_BLOCK_SIZE

h5py Documentation, Release 3.10.0

• fs_threshold – The smallest free-space section size that the free space manager will track.
Only allowed when creating a new file. The default is 1.

• page_buf_size – Page buffer size in bytes. Only allowed for HDF5 files created with
fs_strategy=”page”. Must be a power of two value and greater or equal than the file space
page size when creating the file. It is not used by default.

• min_meta_keep – Minimum percentage of metadata to keep in the page buffer before al-
lowing pages containing metadata to be evicted. Applicable only if page_buf_size is set.
Default value is zero.

• min_raw_keep – Minimum percentage of raw data to keep in the page buffer before allowing
pages containing raw data to be evicted. Applicable only if page_buf_size is set. Default
value is zero.

• locking – The file locking behavior. One of:

– False (or “false”) – Disable file locking

– True (or “true”) – Enable file locking

– ”best-effort” – Enable file locking but ignore some errors

– None – Use HDF5 defaults

Warning: The HDF5_USE_FILE_LOCKING environment variable can override this
parameter.

Only available with HDF5 >= 1.12.1 or 1.10.x >= 1.10.7.

• alignment_threshold – Together with alignment_interval, this property ensures that
any file object greater than or equal in size to the alignement threshold (in bytes) will be
aligned on an address which is a multiple of alignment interval.

• alignment_interval – This property should be used in conjunction with
alignment_threshold. See the description above. For more details, see Data alignment.

• meta_block_size – Determines the current minimum size, in bytes, of new metadata block
allocations. See Meta block size.

• kwds – Driver-specific keywords; see File drivers.

__bool__()
Check that the file descriptor is valid and the file open:

>>> f = h5py.File(filename)
>>> f.close()
>>> if f:
... print("file is open")
... else:
... print("file is closed")
file is closed

close()
Close this file. All open objects will become invalid.

flush()
Request that the HDF5 library flush its buffers to disk.

22 Chapter 4. High-level API reference

h5py Documentation, Release 3.10.0

id
Low-level identifier (an instance of FileID).

filename
Name of this file on disk, as a Unicode string.

mode
String indicating if the file is open readonly (“r”) or read-write (“r+”). Will always be one of these two
values, regardless of the mode used to open the file.

swmr_mode
True if the file access is using Single Writer Multiple Reader (SWMR). Use mode to distinguish SWMR
read from write.

driver
String giving the driver used to open the file. Refer to File drivers for a list of drivers.

libver
2-tuple with library version settings. See Version bounding.

userblock_size
Size of user block (in bytes). Generally 0. See User block.

meta_block_size
Minimum size, in bytes, of metadata block allocations. Default: 2048. See Meta block size.

4.2 Groups

Groups are the container mechanism by which HDF5 files are organized. From a Python perspective, they operate
somewhat like dictionaries. In this case the “keys” are the names of group members, and the “values” are the members
themselves (Group and Dataset) objects.

Group objects also contain most of the machinery which makes HDF5 useful. The File object does double duty as the
HDF5 root group, and serves as your entry point into the file:

>>> f = h5py.File('foo.hdf5','w')
>>> f.name
'/'
>>> list(f.keys())
[]

Names of all objects in the file are all text strings (str). These will be encoded with the HDF5-approved UTF-8
encoding before being passed to the HDF5 C library. Objects may also be retrieved using byte strings, which will be
passed on to HDF5 as-is.

4.2.1 Creating groups

New groups are easy to create:

>>> grp = f.create_group("bar")
>>> grp.name
'/bar'
>>> subgrp = grp.create_group("baz")
>>> subgrp.name
'/bar/baz'

4.2. Groups 23

https://api.h5py.org/h5f.html#h5py.h5f.FileID

h5py Documentation, Release 3.10.0

Multiple intermediate groups can also be created implicitly:

>>> grp2 = f.create_group("/some/long/path")
>>> grp2.name
'/some/long/path'
>>> grp3 = f['/some/long']
>>> grp3.name
'/some/long'

4.2.2 Dict interface and links

Groups implement a subset of the Python dictionary convention. They have methods like keys(), values() and
support iteration. Most importantly, they support the indexing syntax, and standard exceptions:

>>> myds = subgrp["MyDS"]
>>> missing = subgrp["missing"]
KeyError: "Name doesn't exist (Symbol table: Object not found)"

Objects can be deleted from the file using the standard syntax:

>>> del subgroup["MyDataset"]

Note: When using h5py from Python 3, the keys(), values() and items() methods will return view-like objects instead
of lists. These objects support membership testing and iteration, but can’t be sliced like lists.

By default, objects inside group are iterated in alphanumeric order. However, if group is created with
track_order=True, the insertion order for the group is remembered (tracked) in HDF5 file, and group contents
are iterated in that order. The latter is consistent with Python 3.7+ dictionaries.

The default track_order for all new groups can be specified globally with h5.get_config().track_order.

Hard links

What happens when assigning an object to a name in the group? It depends on the type of object being assigned. For
NumPy arrays or other data, the default is to create an HDF5 datasets:

>>> grp["name"] = 42
>>> out = grp["name"]
>>> out
<HDF5 dataset "name": shape (), type "<i8">

When the object being stored is an existing Group or Dataset, a new link is made to the object:

>>> grp["other name"] = out
>>> grp["other name"]
<HDF5 dataset "other name": shape (), type "<i8">

Note that this is not a copy of the dataset! Like hard links in a UNIX file system, objects in an HDF5 file can be stored
in multiple groups:

>>> grp["other name"] == grp["name"]
True

24 Chapter 4. High-level API reference

h5py Documentation, Release 3.10.0

Soft links

Also like a UNIX filesystem, HDF5 groups can contain “soft” or symbolic links, which contain a text path instead of
a pointer to the object itself. You can easily create these in h5py by using h5py.SoftLink:

>>> myfile = h5py.File('foo.hdf5','w')
>>> group = myfile.create_group("somegroup")
>>> myfile["alias"] = h5py.SoftLink('/somegroup')

If the target is removed, they will “dangle”:

>>> del myfile['somegroup']
>>> print(myfile['alias'])
KeyError: 'Component not found (Symbol table: Object not found)'

External links

External links are “soft links plus”, which allow you to specify the name of the file as well as the path to the desired
object. You can refer to objects in any file you wish. Use similar syntax as for soft links:

>>> myfile = h5py.File('foo.hdf5','w')
>>> myfile['ext link'] = h5py.ExternalLink("otherfile.hdf5", "/path/to/resource")

When the link is accessed, the file “otherfile.hdf5” is opened, and object at “/path/to/resource” is returned.

Since the object retrieved is in a different file, its “.file” and “.parent” properties will refer to objects in that file, not the
file in which the link resides.

Note: Currently, you can’t access an external link if the file it points to is already open. This is related to how HDF5
manages file permissions internally.

Note: The filename is stored in the file as bytes, normally UTF-8 encoded. In most cases, this should work reliably,
but problems are possible if a file created on one platform is accessed on another. Older versions of HDF5 may have
problems on Windows in particular. See Filenames on different systems for more details.

4.2.3 Reference

class h5py.Group(identifier)
Generally Group objects are created by opening objects in the file, or by the method Group.create_group().
Call the constructor with a GroupID instance to create a new Group bound to an existing low-level identifier.

__iter__()
Iterate over the names of objects directly attached to the group. Use Group.visit() or Group.
visititems() for recursive access to group members.

__contains__(name)
Dict-like membership testing. name may be a relative or absolute path.

__getitem__(name)
Retrieve an object. name may be a relative or absolute path, or an object or region reference. See Dict
interface and links.

4.2. Groups 25

https://api.h5py.org/h5g.html#h5py.h5g.GroupID

h5py Documentation, Release 3.10.0

__setitem__(name, value)
Create a new link, or automatically create a dataset. See Dict interface and links.

__bool__()
Check that the group is accessible. A group could be inaccessible for several reasons. For instance, the
group, or the file it belongs to, may have been closed elsewhere.

>>> f = h5py.open(filename)
>>> group = f["MyGroup"]
>>> f.close()
>>> if group:
... print("group is accessible")
... else:
... print("group is inaccessible")
group is inaccessible

keys()

Get the names of directly attached group members. Use Group.visit() or Group.
visititems() for recursive access to group members.

Returns set-like object.

values()
Get the objects contained in the group (Group and Dataset instances). Broken soft or external links show
up as None.

Returns a collection or bag-like object.

items()
Get (name, value) pairs for object directly attached to this group. Values for broken soft or external
links show up as None.

Returns a set-like object.

get(name, default=None, getclass=False, getlink=False)
Retrieve an item, or information about an item. name and default work like the standard Python dict.get.

Parameters

• name – Name of the object to retrieve. May be a relative or absolute path.

• default – If the object isn’t found, return this instead.

• getclass – If True, return the class of object instead; Group or Dataset.

• getlink – If true, return the type of link via a HardLink , SoftLink or ExternalLink
instance. If getclass is also True, returns the corresponding Link class without instanti-
ating it.

visit(callable)
Recursively visit all objects in this group and subgroups. You supply a callable with the signature:

callable(name) -> None or return value

name will be the name of the object relative to the current group. Return None to continue visiting until
all objects are exhausted. Returning anything else will immediately stop visiting and return that value from
visit:

26 Chapter 4. High-level API reference

h5py Documentation, Release 3.10.0

>>> def find_foo(name):
... """ Find first object with 'foo' anywhere in the name """
... if 'foo' in name:
... return name
>>> group.visit(find_foo)
'some/subgroup/foo'

visititems(callable)
Recursively visit all objects in this group and subgroups. Like Group.visit(), except your callable should
have the signature:

callable(name, object) -> None or return value

In this case object will be a Group or Dataset instance.

move(source, dest)
Move an object or link in the file. If source is a hard link, this effectively renames the object. If a soft or
external link, the link itself is moved.

Parameters

• source (String) – Name of object or link to move.

• dest (String) – New location for object or link.

copy(source, dest, name=None, shallow=False, expand_soft=False, expand_external=False,
expand_refs=False, without_attrs=False)

Copy an object or group. The source can be a path, Group, Dataset, or Datatype object. The destination
can be either a path or a Group object. The source and destination need not be in the same file.

If the source is a Group object, by default all objects within that group will be copied recursively.

When the destination is a Group object, by default the target will be created in that group with its current
name (basename of obj.name). You can override that by setting “name” to a string.

Parameters

• source – What to copy. May be a path in the file or a Group/Dataset object.

• dest – Where to copy it. May be a path or Group object.

• name – If the destination is a Group object, use this for the name of the copied object
(default is basename).

• shallow – Only copy immediate members of a group.

• expand_soft – Expand soft links into new objects.

• expand_external – Expand external links into new objects.

• expand_refs – Copy objects which are pointed to by references.

• without_attrs – Copy object(s) without copying HDF5 attributes.

create_group(name, track_order=None)
Create and return a new group in the file.

Parameters

• name (String or None) – Name of group to create. May be an absolute or relative path.
Provide None to create an anonymous group, to be linked into the file later.

• track_order – Track dataset/group/attribute creation order under this group if True. De-
fault is h5.get_config().track_order.

4.2. Groups 27

h5py Documentation, Release 3.10.0

Returns The new Group object.

require_group(name)
Open a group in the file, creating it if it doesn’t exist. TypeError is raised if a conflicting object already
exists. Parameters as in Group.create_group().

create_dataset(name, shape=None, dtype=None, data=None, **kwds)
Create a new dataset. Options are explained in Creating datasets.

Parameters

• name – Name of dataset to create. May be an absolute or relative path. Provide None to
create an anonymous dataset, to be linked into the file later.

• shape – Shape of new dataset (Tuple).

• dtype – Data type for new dataset

• data – Initialize dataset to this (NumPy array).

• chunks – Chunk shape, or True to enable auto-chunking.

• maxshape – Dataset will be resizable up to this shape (Tuple). Automatically enables
chunking. Use None for the axes you want to be unlimited.

• compression – Compression strategy. See Filter pipeline.

• compression_opts – Parameters for compression filter.

• scaleoffset – See Scale-Offset filter.

• shuffle – Enable shuffle filter (T/F). See Shuffle filter.

• fletcher32 – Enable Fletcher32 checksum (T/F). See Fletcher32 filter.

• fillvalue – This value will be used when reading uninitialized parts of the dataset.

• track_times – Enable dataset creation timestamps (T/F).

• track_order – Track attribute creation order if True. Default is h5.get_config().
track_order.

• external – Store the dataset in one or more external, non-HDF5 files. This should be an
iterable (such as a list) of tuples of (name, offset, size) to store data from offset
to offset + size in the named file. Each name must be a str, bytes, or os.PathLike;
each offset and size, an integer. The last file in the sequence may have size h5py.h5f.
UNLIMITED to let it grow as needed. If only a name is given instead of an iterable of tuples,
it is equivalent to [(name, 0, h5py.h5f.UNLIMITED)].

• allow_unknown_filter – Do not check that the requested filter is available for use (T/F).
This should only be set if you will write any data with write_direct_chunk, compressing
the data before passing it to h5py.

• rdcc_nbytes – Total size of the dataset’s chunk cache in bytes. The default size is 1024**2
(1 MiB).

• rdcc_w0 – The chunk preemption policy for this dataset. This must be between 0 and 1
inclusive and indicates the weighting according to which chunks which have been fully
read or written are penalized when determining which chunks to flush from cache. A value
of 0 means fully read or written chunks are treated no differently than other chunks (the
preemption is strictly LRU) while a value of 1 means fully read or written chunks are always
preempted before other chunks. If your application only reads or writes data once, this can
be safely set to 1. Otherwise, this should be set lower depending on how often you re-read
or re-write the same data. The default value is 0.75.

28 Chapter 4. High-level API reference

h5py Documentation, Release 3.10.0

• rdcc_nslots – The number of chunk slots in the dataset’s chunk cache. Increasing this
value reduces the number of cache collisions, but slightly increases the memory used. Due
to the hashing strategy, this value should ideally be a prime number. As a rule of thumb,
this value should be at least 10 times the number of chunks that can fit in rdcc_nbytes bytes.
For maximum performance, this value should be set approximately 100 times that number
of chunks. The default value is 521.

require_dataset(name, shape, dtype, exact=False, **kwds)
Open a dataset, creating it if it doesn’t exist.

If keyword “exact” is False (default), an existing dataset must have the same shape and a conversion-
compatible dtype to be returned. If True, the shape and dtype must match exactly.

If keyword “maxshape” is given, the maxshape and dtype must match instead.

If any of the keywords “rdcc_nslots”, “rdcc_nbytes”, or “rdcc_w0” are given, they will be used to configure
the dataset’s chunk cache.

Other dataset keywords (see create_dataset) may be provided, but are only used if a new dataset is to be
created.

Raises TypeError if an incompatible object already exists, or if the shape, maxshape or dtype don’t match
according to the above rules.

Parameters exact – Require shape and type to match exactly (T/F)

create_dataset_like(name, other, **kwds)
Create a dataset similar to other, much like numpy’s _like functions.

Parameters

• name – Name of the dataset (absolute or relative). Provide None to make an anonymous
dataset.

• other – The dataset whom the new dataset should mimic. All properties, such as shape,
dtype, chunking, . . . will be taken from it, but no data or attributes are being copied.

Any dataset keywords (see create_dataset) may be provided, including shape and dtype, in which case the
provided values take precedence over those from other.

create_virtual_dataset(name, layout, fillvalue=None)
Create a new virtual dataset in this group. See Virtual Datasets (VDS) for more details.

Parameters

• name (str) – Name of the dataset (absolute or relative).

• layout (VirtualLayout) – Defines what source data fills which parts of the virtual
dataset.

• fillvalue – The value to use where there is no data.

build_virtual_dataset()
Assemble a virtual dataset in this group.

This is used as a context manager:

with f.build_virtual_dataset('virt', (10, 1000), np.uint32) as layout:
layout[0] = h5py.VirtualSource('foo.h5', 'data', (1000,))

Inside the context, you populate a VirtualLayout object. The file is only modified when you leave the
context, and if there’s no error.

Parameters

4.2. Groups 29

h5py Documentation, Release 3.10.0

• name (str) – Name of the dataset (absolute or relative)

• shape (tuple) – Shape of the dataset

• dtype – A numpy dtype for data read from the virtual dataset

• maxshape (tuple) – Maximum dimensions if the dataset can grow (optional). Use None
for unlimited dimensions.

• fillvalue – The value used where no data is available.

attrs
Attributes for this group.

id
The groups’s low-level identifier; an instance of GroupID.

ref
An HDF5 object reference pointing to this group. See Using object references.

regionref
A proxy object allowing you to interrogate region references. See Using region references.

name
String giving the full path to this group.

file
File instance in which this group resides.

parent
Group instance containing this group.

4.2.4 Link classes

class h5py.HardLink
Exists only to support Group.get(). Has no state and provides no properties or methods.

class h5py.SoftLink(path)
Exists to allow creation of soft links in the file. See Soft links. These only serve as containers for a path; they are
not related in any way to a particular file.

Parameters path (String) – Value of the soft link.

path
Value of the soft link

class h5py.ExternalLink(filename, path)
Like SoftLink , only they specify a filename in addition to a path. See External links.

Parameters

• filename (String) – Name of the file to which the link points

• path (String) – Path to the object in the external file.

filename
Name of the external file as a Unicode string

path
Path to the object in the external file

30 Chapter 4. High-level API reference

https://api.h5py.org/h5g.html#h5py.h5g.GroupID

h5py Documentation, Release 3.10.0

4.3 Datasets

Datasets are very similar to NumPy arrays. They are homogeneous collections of data elements, with an immutable
datatype and (hyper)rectangular shape. Unlike NumPy arrays, they support a variety of transparent storage features
such as compression, error-detection, and chunked I/O.

They are represented in h5py by a thin proxy class which supports familiar NumPy operations like slicing, along with
a variety of descriptive attributes:

• shape attribute

• size attribute

• ndim attribute

• dtype attribute

• nbytes attribute

h5py supports most NumPy dtypes, and uses the same character codes (e.g. 'f', 'i8') and dtype machinery as Numpy.
See FAQ for the list of dtypes h5py supports.

4.3.1 Creating datasets

New datasets are created using either Group.create_dataset() or Group.require_dataset(). Existing datasets
should be retrieved using the group indexing syntax (dset = group["name"]).

To initialise a dataset, all you have to do is specify a name, shape, and optionally the data type (defaults to 'f'):

>>> dset = f.create_dataset("default", (100,))
>>> dset = f.create_dataset("ints", (100,), dtype='i8')

Note: This is not the same as creating an Empty dataset.

You may also initialize the dataset to an existing NumPy array by providing the data parameter:

>>> arr = np.arange(100)
>>> dset = f.create_dataset("init", data=arr)

Keywords shape and dtypemay be specified along with data; if so, they will override data.shape and data.dtype.
It’s required that (1) the total number of points in shape match the total number of points in data.shape, and that (2)
it’s possible to cast data.dtype to the requested dtype.

4.3.2 Reading & writing data

HDF5 datasets re-use the NumPy slicing syntax to read and write to the file. Slice specifications are translated directly to
HDF5 “hyperslab” selections, and are a fast and efficient way to access data in the file. The following slicing arguments
are recognized:

• Indices: anything that can be converted to a Python long

• Slices (i.e. [:] or [0:10])

• Field names, in the case of compound data

• At most one Ellipsis (...) object

4.3. Datasets 31

https://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html

h5py Documentation, Release 3.10.0

• An empty tuple (()) to retrieve all data or scalar data

Here are a few examples (output omitted).

>>> dset = f.create_dataset("MyDataset", (10,10,10), 'f')
>>> dset[0,0,0]
>>> dset[0,2:10,1:9:3]
>>> dset[:,::2,5]
>>> dset[0]
>>> dset[1,5]
>>> dset[0,...]
>>> dset[...,6]
>>> dset[()]

There’s more documentation on what parts of numpy’s fancy indexing are available in h5py.

For compound data, it is advised to separate field names from the numeric slices:

>>> dset.fields("FieldA")[:10] # Read a single field
>>> dset[:10]["FieldA"] # Read all fields, select in NumPy

It is also possible to mix indexing and field names (dset[:10, "FieldA"]), but this might be removed in a future
version of h5py.

To retrieve the contents of a scalar dataset, you can use the same syntax as in NumPy: result = dset[()]. In other
words, index into the dataset using an empty tuple.

For simple slicing, broadcasting is supported:

>>> dset[0,:,:] = np.arange(10) # Broadcasts to (10,10)

Broadcasting is implemented using repeated hyperslab selections, and is safe to use with very large target selections.
It is supported for the above “simple” (integer, slice and ellipsis) slicing only.

Warning: Currently h5py does not support nested compound types, see GH1197 for more information.

Multiple indexing

Indexing a dataset once loads a numpy array into memory. If you try to index it twice to write data, you may be surprised
that nothing seems to have happened:

>>> f = h5py.File('my_hdf5_file.h5', 'w')
>>> dset = f.create_dataset("test", (2, 2))
>>> dset[0][1] = 3.0 # No effect!
>>> print(dset[0][1])
0.0

The assignment above only modifies the loaded array. It’s equivalent to this:

>>> new_array = dset[0]
>>> new_array[1] = 3.0
>>> print(new_array[1])
3.0
>>> print(dset[0][1])
0.0

32 Chapter 4. High-level API reference

https://github.com/h5py/h5py/issues/1197

h5py Documentation, Release 3.10.0

To write to the dataset, combine the indexes in a single step:

>>> dset[0, 1] = 3.0
>>> print(dset[0, 1])
3.0

Length and iteration

As with NumPy arrays, the len() of a dataset is the length of the first axis, and iterating over a dataset iterates over
the first axis. However, modifications to the yielded data are not recorded in the file. Resizing a dataset while iterating
has undefined results.

On 32-bit platforms, len(dataset) will fail if the first axis is bigger than 2**32. It’s recommended to use Dataset.
len() for large datasets.

4.3.3 Chunked storage

An HDF5 dataset created with the default settings will be contiguous; in other words, laid out on disk in traditional C
order. Datasets may also be created using HDF5’s chunked storage layout. This means the dataset is divided up into
regularly-sized pieces which are stored haphazardly on disk, and indexed using a B-tree.

Chunked storage makes it possible to resize datasets, and because the data is stored in fixed-size chunks, to use com-
pression filters.

To enable chunked storage, set the keyword chunks to a tuple indicating the chunk shape:

>>> dset = f.create_dataset("chunked", (1000, 1000), chunks=(100, 100))

Data will be read and written in blocks with shape (100,100); for example, the data in dset[0:100,0:100] will be
stored together in the file, as will the data points in range dset[400:500, 100:200].

Chunking has performance implications. It’s recommended to keep the total size of your chunks between 10 KiB and
1 MiB, larger for larger datasets. Also keep in mind that when any element in a chunk is accessed, the entire chunk is
read from disk.

Since picking a chunk shape can be confusing, you can have h5py guess a chunk shape for you:

>>> dset = f.create_dataset("autochunk", (1000, 1000), chunks=True)

Auto-chunking is also enabled when using compression or maxshape, etc., if a chunk shape is not manually specified.

The iter_chunks method returns an iterator that can be used to perform chunk by chunk reads or writes:

>>> for s in dset.iter_chunks():
>>> arr = dset[s] # get numpy array for chunk

4.3. Datasets 33

h5py Documentation, Release 3.10.0

4.3.4 Resizable datasets

In HDF5, datasets can be resized once created up to a maximum size, by calling Dataset.resize(). You specify
this maximum size when creating the dataset, via the keyword maxshape:

>>> dset = f.create_dataset("resizable", (10,10), maxshape=(500, 20))

Any (or all) axes may also be marked as “unlimited”, in which case they may be increased up to the HDF5 per-axis
limit of 2**64 elements. Indicate these axes using None:

>>> dset = f.create_dataset("unlimited", (10, 10), maxshape=(None, 10))

Note: Resizing an array with existing data works differently than in NumPy; if any axis shrinks, the data in the missing
region is discarded. Data does not “rearrange” itself as it does when resizing a NumPy array.

4.3.5 Filter pipeline

Chunked data may be transformed by the HDF5 filter pipeline. The most common use is applying transparent compres-
sion. Data is compressed on the way to disk, and automatically decompressed when read. Once the dataset is created
with a particular compression filter applied, data may be read and written as normal with no special steps required.

Enable compression with the compression keyword to Group.create_dataset():

>>> dset = f.create_dataset("zipped", (100, 100), compression="gzip")

Options for each filter may be specified with compression_opts:

>>> dset = f.create_dataset("zipped_max", (100, 100), compression="gzip", compression_
→˓opts=9)

Lossless compression filters

GZIP filter ("gzip") Available with every installation of HDF5, so it’s best where portability is required. Good
compression, moderate speed. compression_opts sets the compression level and may be an integer from 0 to
9, default is 4.

LZF filter ("lzf") Available with every installation of h5py (C source code also available). Low to moderate com-
pression, very fast. No options.

SZIP filter ("szip") Patent-encumbered filter used in the NASA community. Not available with all installations of
HDF5 due to legal reasons. Consult the HDF5 docs for filter options.

34 Chapter 4. High-level API reference

h5py Documentation, Release 3.10.0

Custom compression filters

In addition to the compression filters listed above, compression filters can be dynamically loaded by the underlying
HDF5 library. This is done by passing a filter number to Group.create_dataset() as the compression parameter.
The compression_opts parameter will then be passed to this filter.

See also:

hdf5plugin A Python package of several popular filters, including Blosc, LZ4 and ZFP, for convenient use with h5py

HDF5 Filter Plugins A collection of filters as a single download from The HDF Group

Registered filter plugins The index of publicly announced filter plugins

Note: The underlying implementation of the compression filter will have the H5Z_FLAG_OPTIONAL flag set. This
indicates that if the compression filter doesn’t compress a block while writing, no error will be thrown. The filter will
then be skipped when subsequently reading the block.

Scale-Offset filter

Filters enabled with the compression keywords are lossless; what comes out of the dataset is exactly what you put in.
HDF5 also includes a lossy filter which trades precision for storage space.

Works with integer and floating-point data only. Enable the scale-offset filter by setting Group.create_dataset()
keyword scaleoffset to an integer.

For integer data, this specifies the number of bits to retain. Set to 0 to have HDF5 automatically compute the number
of bits required for lossless compression of the chunk. For floating-point data, indicates the number of digits after the
decimal point to retain.

Warning: Currently the scale-offset filter does not preserve special float values (i.e. NaN, inf), see https://forum.
hdfgroup.org/t/scale-offset-filter-and-special-float-values-nan-infinity/3379 for more information and follow-up.

Shuffle filter

Block-oriented compressors like GZIP or LZF work better when presented with runs of similar values. Enabling the
shuffle filter rearranges the bytes in the chunk and may improve compression ratio. No significant speed penalty,
lossless.

Enable by setting Group.create_dataset() keyword shuffle to True.

Fletcher32 filter

Adds a checksum to each chunk to detect data corruption. Attempts to read corrupted chunks will fail with an error.
No significant speed penalty. Obviously shouldn’t be used with lossy compression filters.

Enable by setting Group.create_dataset() keyword fletcher32 to True.

4.3. Datasets 35

https://pypi.org/project/hdf5plugin/
https://portal.hdfgroup.org/display/support/HDF5+Filter+Plugins
https://portal.hdfgroup.org/display/support/Filters
https://forum.hdfgroup.org/t/scale-offset-filter-and-special-float-values-nan-infinity/3379
https://forum.hdfgroup.org/t/scale-offset-filter-and-special-float-values-nan-infinity/3379

h5py Documentation, Release 3.10.0

4.3.6 Multi-Block Selection

The full H5Sselect_hyperslab API is exposed via the MultiBlockSlice object. This takes four elements to define the
selection (start, count, stride and block) in contrast to the built-in slice object, which takes three elements. A Multi-
BlockSlice can be used in place of a slice to select a number of (count) blocks of multiple elements separated by a
stride, rather than a set of single elements separated by a step.

For an explanation of how this slicing works, see the HDF5 documentation.

For example:

>>> dset[...]
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> dset[MultiBlockSlice(start=1, count=3, stride=4, block=2)]
array([1, 2, 5, 6, 9, 10])

They can be used in multi-dimensional slices alongside any slicing object, including other MultiBlockSlices. For a
more complete example of this, see the multiblockslice_interleave.py example script.

4.3.7 Fancy indexing

A subset of the NumPy fancy-indexing syntax is supported. Use this with caution, as the underlying HDF5 mechanisms
may have different performance than you expect.

For any axis, you can provide an explicit list of points you want; for a dataset with shape (10, 10):

>>> dset.shape
(10, 10)
>>> result = dset[0, [1,3,8]]
>>> result.shape
(3,)
>>> result = dset[1:6, [5,8,9]]
>>> result.shape
(5, 3)

The following restrictions exist:

• Selection coordinates must be given in increasing order

• Duplicate selections are ignored

• Very long lists (> 1000 elements) may produce poor performance

NumPy boolean “mask” arrays can also be used to specify a selection. The result of this operation is a 1-D array with
elements arranged in the standard NumPy (C-style) order. Behind the scenes, this generates a laundry list of points to
select, so be careful when using it with large masks:

>>> arr = numpy.arange(100).reshape((10,10))
>>> dset = f.create_dataset("MyDataset", data=arr)
>>> result = dset[arr > 50]
>>> result.shape
(49,)

Changed in version 2.10: Selecting using an empty list is now allowed. This returns an array with length 0 in the
relevant dimension.

36 Chapter 4. High-level API reference

https://support.hdfgroup.org/HDF5/Tutor/selectsimple.html

h5py Documentation, Release 3.10.0

4.3.8 Creating and Reading Empty (or Null) datasets and attributes

HDF5 has the concept of Empty or Null datasets and attributes. These are not the same as an array with a shape of (),
or a scalar dataspace in HDF5 terms. Instead, it is a dataset with an associated type, no data, and no shape. In h5py,
we represent this as either a dataset with shape None, or an instance of h5py.Empty. Empty datasets and attributes
cannot be sliced.

To create an empty attribute, use h5py.Empty as per Attributes:

>>> obj.attrs["EmptyAttr"] = h5py.Empty("f")

Similarly, reading an empty attribute returns h5py.Empty:

>>> obj.attrs["EmptyAttr"]
h5py.Empty(dtype="f")

Empty datasets can be created either by defining a dtype but no shape in create_dataset:

>>> grp.create_dataset("EmptyDataset", dtype="f")

or by data to an instance of h5py.Empty:

>>> grp.create_dataset("EmptyDataset", data=h5py.Empty("f"))

An empty dataset has shape defined as None, which is the best way of determining whether a dataset is empty or not.
An empty dataset can be “read” in a similar way to scalar datasets, i.e. if empty_dataset is an empty dataset:

>>> empty_dataset[()]
h5py.Empty(dtype="f")

The dtype of the dataset can be accessed via <dset>.dtype as per normal. As empty datasets cannot be sliced, some
methods of datasets such as read_direct will raise a TypeError exception if used on a empty dataset.

4.3.9 Reference

class h5py.Dataset(identifier)
Dataset objects are typically created via Group.create_dataset(), or by retrieving existing datasets from a
file. Call this constructor to create a new Dataset bound to an existing DatasetID identifier.

__getitem__(args)
NumPy-style slicing to retrieve data. See Reading & writing data.

__setitem__(args)
NumPy-style slicing to write data. See Reading & writing data.

__bool__()
Check that the dataset is accessible. A dataset could be inaccessible for several reasons. For instance, the
dataset, or the file it belongs to, may have been closed elsewhere.

>>> f = h5py.open(filename)
>>> dset = f["MyDS"]
>>> f.close()
>>> if dset:
... print("datset accessible")
... else:

(continues on next page)

4.3. Datasets 37

https://api.h5py.org/h5d.html#h5py.h5d.DatasetID

h5py Documentation, Release 3.10.0

(continued from previous page)

... print("dataset inaccessible")
dataset inaccessible

read_direct(array, source_sel=None, dest_sel=None)
Read from an HDF5 dataset directly into a NumPy array, which can avoid making an intermediate copy as
happens with slicing. The destination array must be C-contiguous and writable, and must have a datatype
to which the source data may be cast. Data type conversion will be carried out on the fly by HDF5.

source_sel and dest_sel indicate the range of points in the dataset and destination array respectively. Use
the output of numpy.s_[args]:

>>> dset = f.create_dataset("dset", (100,), dtype='int64')
>>> arr = np.zeros((100,), dtype='int32')
>>> dset.read_direct(arr, np.s_[0:10], np.s_[50:60])

write_direct(source, source_sel=None, dest_sel=None)
Write data directly to HDF5 from a NumPy array. The source array must be C-contiguous. Selections must
be the output of numpy.s_[<args>]. Broadcasting is supported for simple indexing.

astype(dtype)
Return a wrapper allowing you to read data as a particular type. Conversion is handled by HDF5 directly,
on the fly:

>>> dset = f.create_dataset("bigint", (1000,), dtype='int64')
>>> out = dset.astype('int16')[:]
>>> out.dtype
dtype('int16')

Changed in version 3.9: astype() can no longer be used as a context manager.

asstr(encoding=None, errors='strict')
Only for string datasets. Returns a wrapper to read data as Python string objects:

>>> s = dataset.asstr()[0]

encoding and errors work like bytes.decode(), but the default encoding is defined by the datatype -
ASCII or UTF-8. This is not guaranteed to be correct.

New in version 3.0.

fields(names)
Get a wrapper to read a subset of fields from a compound data type:

>>> 2d_coords = dataset.fields(['x', 'y'])[:]

If names is a string, a single field is extracted, and the resulting arrays will have that dtype. Otherwise, it
should be an iterable, and the read data will have a compound dtype.

New in version 3.0.

iter_chunks()
Iterate over chunks in a chunked dataset. The optional sel argument is a slice or tuple of slices that defines
the region to be used. If not set, the entire dataspace will be used for the iterator.

For each chunk within the given region, the iterator yields a tuple of slices that gives the intersection of the
given chunk with the selection area. This can be used to read or write data in that chunk.

A TypeError will be raised if the dataset is not chunked.

38 Chapter 4. High-level API reference

h5py Documentation, Release 3.10.0

A ValueError will be raised if the selection region is invalid.

New in version 3.0.

resize(size, axis=None)
Change the shape of a dataset. size may be a tuple giving the new dataset shape, or an integer giving the
new length of the specified axis.

Datasets may be resized only up to Dataset.maxshape.

len()
Return the size of the first axis.

make_scale(name='')
Make this dataset an HDF5 dimension scale.

You can then attach it to dimensions of other datasets like this:

other_ds.dims[0].attach_scale(ds)

You can optionally pass a name to associate with this scale.

virtual_sources()
If this dataset is a virtual dataset, return a list of named tuples: (vspace, file_name, dset_name,
src_space), describing which parts of the dataset map to which source datasets. The two ‘space’ members
are low-level SpaceID objects.

shape
NumPy-style shape tuple giving dataset dimensions.

dtype
NumPy dtype object giving the dataset’s type.

size
Integer giving the total number of elements in the dataset.

nbytes
Integer giving the total number of bytes required to load the full dataset into RAM (i.e. dset[()]). This may
not be the amount of disk space occupied by the dataset, as datasets may be compressed when written or
only partly filled with data. This value also does not include the array overhead, as it only describes the
size of the data itself. Thus the real amount of RAM occupied by this dataset may be slightly greater.

New in version 3.0.

ndim
Integer giving the total number of dimensions in the dataset.

maxshape
NumPy-style shape tuple indicating the maximum dimensions up to which the dataset may be resized. Axes
with None are unlimited.

chunks
Tuple giving the chunk shape, or None if chunked storage is not used. See Chunked storage.

compression
String with the currently applied compression filter, or None if compression is not enabled for this dataset.
See Filter pipeline.

compression_opts
Options for the compression filter. See Filter pipeline.

4.3. Datasets 39

https://api.h5py.org/h5s.html#h5py.h5s.SpaceID

h5py Documentation, Release 3.10.0

scaleoffset
Setting for the HDF5 scale-offset filter (integer), or None if scale-offset compression is not used for this
dataset. See Scale-Offset filter.

shuffle
Whether the shuffle filter is applied (T/F). See Shuffle filter.

fletcher32
Whether Fletcher32 checksumming is enabled (T/F). See Fletcher32 filter.

fillvalue
Value used when reading uninitialized portions of the dataset, or None if no fill value has been defined, in
which case HDF5 will use a type-appropriate default value. Can’t be changed after the dataset is created.

external
If this dataset is stored in one or more external files, this is a list of 3-tuples, like the external= parameter
to Group.create_dataset(). Otherwise, it is None.

is_virtual
True if this dataset is a virtual dataset, otherwise False.

dims
Access to Dimension Scales.

is_scale
Return True if the dataset is also a dimension scale, False otherwise.

attrs
Attributes for this dataset.

id
The dataset’s low-level identifier; an instance of DatasetID.

ref
An HDF5 object reference pointing to this dataset. See Using object references.

regionref
Proxy object for creating HDF5 region references. See Using region references.

name
String giving the full path to this dataset.

file
File instance in which this dataset resides

parent
Group instance containing this dataset.

4.4 Attributes

Attributes are a critical part of what makes HDF5 a “self-describing” format. They are small named pieces of data
attached directly to Group and Dataset objects. This is the official way to store metadata in HDF5.

Each Group or Dataset has a small proxy object attached to it, at <obj>.attrs. Attributes have the following proper-
ties:

• They may be created from any scalar or NumPy array

• Each attribute should be small (generally < 64k)

• There is no partial I/O (i.e. slicing); the entire attribute must be read.

40 Chapter 4. High-level API reference

https://api.h5py.org/h5d.html#h5py.h5d.DatasetID

h5py Documentation, Release 3.10.0

The .attrs proxy objects are of class AttributeManager, below. This class supports a dictionary-style interface.

By default, attributes are iterated in alphanumeric order. However, if group or dataset is created with
track_order=True, the attribute insertion order is remembered (tracked) in HDF5 file, and iteration uses that or-
der. The latter is consistent with Python 3.7+ dictionaries.

The default track_order for all new groups and datasets can be specified globally with h5.get_config().
track_order.

4.4.1 Reference

class h5py.AttributeManager(parent)
AttributeManager objects are created directly by h5py. You should access instances by group.attrs or
dataset.attrs, not by manually creating them.

__iter__()
Get an iterator over attribute names.

__contains__(name)
Determine if attribute name is attached to this object.

__getitem__(name)
Retrieve an attribute.

__setitem__(name, val)
Create an attribute, overwriting any existing attribute. The type and shape of the attribute are determined
automatically by h5py.

__delitem__(name)
Delete an attribute. KeyError if it doesn’t exist.

keys()
Get the names of all attributes attached to this object.

Returns set-like object.

values()
Get the values of all attributes attached to this object.

Returns collection or bag-like object.

items()
Get (name, value) tuples for all attributes attached to this object.

Returns collection or set-like object.

get(name, default=None)
Retrieve name, or default if no such attribute exists.

get_id(name)
Get the low-level AttrID for the named attribute.

create(name, data, shape=None, dtype=None)
Create a new attribute, with control over the shape and type. Any existing attribute will be overwritten.

Parameters

• name (String) – Name of the new attribute

• data – Value of the attribute; will be put through numpy.array(data).

• shape (Tuple) – Shape of the attribute. Overrides data.shape if both are given, in which
case the total number of points must be unchanged.

4.4. Attributes 41

https://api.h5py.org/h5a.html#h5py.h5a.AttrID

h5py Documentation, Release 3.10.0

• dtype (NumPy dtype) – Data type for the attribute. Overrides data.dtype if both are
given.

modify(name, value)
Change the value of an attribute while preserving its type and shape. Unlike AttributeManager.
__setitem__(), if the attribute already exists, only its value will be changed. This can be useful for
interacting with externally generated files, where the type and shape must not be altered.

If the attribute doesn’t exist, it will be created with a default shape and type.

Parameters

• name (String) – Name of attribute to modify.

• value – New value. Will be put through numpy.array(value).

4.5 Dimension Scales

Datasets are multidimensional arrays. HDF5 provides support for labeling the dimensions and associating one or more
“dimension scales” with each dimension. A dimension scale is simply another HDF5 dataset. In principle, the length
of the multidimensional array along the dimension of interest should be equal to the length of the dimension scale, but
HDF5 does not enforce this property.

The HDF5 library provides the H5DS API for working with dimension scales. H5py provides low-level bindings to this
API in h5py.h5ds. These low-level bindings are in turn used to provide a high-level interface through the Dataset.
dims property. Suppose we have the following data file:

f = File('foo.h5', 'w')
f['data'] = np.ones((4, 3, 2), 'f')

HDF5 allows the dimensions of data to be labeled, for example:

f['data'].dims[0].label = 'z'
f['data'].dims[2].label = 'x'

Note that the first dimension, which has a length of 4, has been labeled “z”, the third dimension (in this case the fastest
varying dimension), has been labeled “x”, and the second dimension was given no label at all.

We can also use HDF5 datasets as dimension scales. For example, if we have:

f['x1'] = [1, 2]
f['x2'] = [1, 1.1]
f['y1'] = [0, 1, 2]
f['z1'] = [0, 1, 4, 9]

We are going to treat the x1, x2, y1, and z1 datasets as dimension scales:

f['x1'].make_scale()
f['x2'].make_scale('x2 name')
f['y1'].make_scale('y1 name')
f['z1'].make_scale('z1 name')

When you create a dimension scale, you may provide a name for that scale. In this case, the x1 scale was not given a
name, but the others were. Now we can associate these dimension scales with the primary dataset:

42 Chapter 4. High-level API reference

https://api.h5py.org/h5ds.html#module-h5py.h5ds

h5py Documentation, Release 3.10.0

f['data'].dims[0].attach_scale(f['z1'])
f['data'].dims[1].attach_scale(f['y1'])
f['data'].dims[2].attach_scale(f['x1'])
f['data'].dims[2].attach_scale(f['x2'])

Note that two dimension scales were associated with the third dimension of data. You can also detach a dimension
scale:

f['data'].dims[2].detach_scale(f['x2'])

but for now, lets assume that we have both x1 and x2 still associated with the third dimension of data. You can attach
a dimension scale to any number of HDF5 datasets, you can even attach it to multiple dimensions of a single HDF5
dataset.

Now that the dimensions of data have been labeled, and the dimension scales for the various axes have been specified,
we have provided much more context with which data can be interpreted. For example, if you want to know the labels
for the various dimensions of data:

>>> [dim.label for dim in f['data'].dims]
['z', '', 'x']

If you want the names of the dimension scales associated with the “x” axis:

>>> f['data'].dims[2].keys()
['', 'x2 name']

items() and values() methods are also provided. The dimension scales themselves can also be accessed with:

f['data'].dims[2][1]

or:

f['data'].dims[2]['x2 name']

such that:

>>> f['data'].dims[2][1] == f['x2']
True

though, beware that if you attempt to index the dimension scales with a string, the first dimension scale whose name
matches the string is the one that will be returned. There is no guarantee that the name of the dimension scale is unique.

Nested dimension scales are not permitted: if a dataset has a dimension scale attached to it, converting the dataset to a
dimension scale will fail, since the HDF5 specification doesn’t allow this.

>>> f['data'].make_scale()
RuntimeError: Unspecified error in H5DSset_scale (return value <0)

4.5. Dimension Scales 43

https://confluence.hdfgroup.org/display/HDF5/H5DS_SET_SCALE

h5py Documentation, Release 3.10.0

4.6 Low-Level API

This documentation mostly describes the h5py high-level API, which offers the main features of HDF5 in an interface
modelled on dictionaries and NumPy arrays. h5py also provides a low-level API, which more closely follows the HDF5
C API.

See also:

• h5py Low-Level API Reference

• HDF5 C/Fortran Reference Manual

You can easily switch between the two levels in your code:

• To the low-level: High-level File, Group and Dataset objects all have a .id attribute exposing the corre-
sponding low-level objects—FileID, GroupID and DatasetID:

dsid = dset.id
dsid.get_offset() # Low-level method

Although there is no high-level object for a single attribute, AttributeManager.get_id() will get the low-
level AttrID object:

aid = dset.attrs.get_id('timestamp')
aid.get_storage_size() # Low-level method

• To the high-level: Low-level FileID, GroupID and DatasetID objects can be passed to the constructors of
File, Group and Dataset, respectively.

44 Chapter 4. High-level API reference

https://api.h5py.org/
https://confluence.hdfgroup.org/display/HDF5/Core+Library
https://api.h5py.org/h5f.html#h5py.h5f.FileID
https://api.h5py.org/h5g.html#h5py.h5g.GroupID
https://api.h5py.org/h5d.html#h5py.h5d.DatasetID
https://api.h5py.org/h5a.html#h5py.h5a.AttrID
https://api.h5py.org/h5f.html#h5py.h5f.FileID
https://api.h5py.org/h5g.html#h5py.h5g.GroupID
https://api.h5py.org/h5d.html#h5py.h5d.DatasetID

CHAPTER

FIVE

ADVANCED TOPICS

5.1 Configuring h5py

5.1.1 Library configuration

A few library options are available to change the behavior of the library. You can get a reference to the global library
configuration object via the function h5py.get_config(). This object supports the following attributes:

complex_names Set to a 2-tuple of strings (real, imag) to control how complex numbers are saved. The
default is (‘r’,’i’).

bool_names Booleans are saved as HDF5 enums. Set this to a 2-tuple of strings (false, true) to control
the names used in the enum. The default is (“FALSE”, “TRUE”).

track_order Whether to track dataset/group/attribute creation order. If container creation order is tracked,
its links and attributes are iterated in ascending creation order (consistent with dict in Python
3.7+); otherwise in ascending alphanumeric order. Global configuration value can be overrid-
den for particular container by specifying track_order argument to h5py.File, h5py.Group.
create_group(), h5py.Group.create_dataset(). The default is False.

5.2 Special types

HDF5 supports a few types which have no direct NumPy equivalent. Among the most useful and widely used are
variable-length (VL) types, and enumerated types. As of version 2.3, h5py fully supports HDF5 enums and VL types.

5.2.1 How special types are represented

Since there is no direct NumPy dtype for variable-length strings, enums or references, h5py extends the dtype system
slightly to let HDF5 know how to store these types. Each type is represented by a native NumPy dtype, with a small
amount of metadata attached. NumPy routines ignore the metadata, but h5py can use it to determine how to store the
data.

The metadata h5py attaches to dtypes is not part of the public API, so it may change between versions. Use the functions
described below to create and check for these types.

45

h5py Documentation, Release 3.10.0

5.2.2 Variable-length strings

See also:

Strings in HDF5

In HDF5, data in VL format is stored as arbitrary-length vectors of a base type. In particular, strings are stored C-style
in null-terminated buffers. NumPy has no native mechanism to support this. Unfortunately, this is the de facto standard
for representing strings in the HDF5 C API, and in many HDF5 applications.

Thankfully, NumPy has a generic pointer type in the form of the “object” (“O”) dtype. In h5py, variable-length strings
are mapped to object arrays. A small amount of metadata attached to an “O” dtype tells h5py that its contents should
be converted to VL strings when stored in the file.

Existing VL strings can be read and written to with no additional effort; Python strings and fixed-length NumPy strings
can be auto-converted to VL data and stored.

Here’s an example showing how to create a VL array of strings:

>>> f = h5py.File('foo.hdf5')
>>> dt = h5py.string_dtype(encoding='utf-8')
>>> ds = f.create_dataset('VLDS', (100,100), dtype=dt)
>>> ds.dtype.kind
'O'
>>> h5py.check_string_dtype(ds.dtype)
string_info(encoding='utf-8', length=None)

h5py.string_dtype(encoding='utf-8', length=None)
Make a numpy dtype for HDF5 strings

Parameters

• encoding – 'utf-8' or 'ascii'.

• length – None for variable-length, or an integer for fixed-length string data, giving the
length in bytes.

h5py.check_string_dtype(dt)
Check if dt is a string dtype. Returns a string_info object if it is, or None if not.

class h5py.string_info
A named tuple type holding string encoding and length.

encoding
The character encoding associated with the string dtype, which can be 'utf-8' or 'ascii'.

length
For fixed-length string dtypes, the length in bytes. None for variable-length strings.

5.2.3 Arbitrary vlen data

Starting with h5py 2.3, variable-length types are not restricted to strings. For example, you can create a “ragged” array
of integers:

>>> dt = h5py.vlen_dtype(np.dtype('int32'))
>>> dset = f.create_dataset('vlen_int', (100,), dtype=dt)
>>> dset[0] = [1,2,3]
>>> dset[1] = [1,2,3,4,5]

46 Chapter 5. Advanced topics

h5py Documentation, Release 3.10.0

Single elements are read as NumPy arrays:

>>> dset[0]
array([1, 2, 3], dtype=int32)

Multidimensional selections produce an object array whose members are integer arrays:

>>> dset[0:2]
array([array([1, 2, 3], dtype=int32), array([1, 2, 3, 4, 5], dtype=int32)], dtype=object)

Note: NumPy doesn’t support ragged arrays, and the ‘arrays of arrays’ h5py uses as a workaround are not as convenient
or efficient as regular NumPy arrays. If you’re deciding how to store data, consider whether there’s a sensible way to
do it without a variable-length type.

h5py.vlen_dtype(basetype)
Make a numpy dtype for an HDF5 variable-length datatype.

Parameters basetype – The dtype of each element in the array.

h5py.check_vlen_dtype(dt)
Check if dt is a variable-length dtype. Returns the base type if it is, or None if not.

5.2.4 Enumerated types

HDF5 has the concept of an enumerated type, which is an integer datatype with a restriction to certain named values.
Since NumPy has no such datatype, HDF5 ENUM types are read and written as integers.

Here’s an example of creating an enumerated type:

>>> dt = h5py.enum_dtype({"RED": 0, "GREEN": 1, "BLUE": 42}, basetype='i')
>>> h5py.check_enum_dtype(dt)
{'BLUE': 42, 'GREEN': 1, 'RED': 0}
>>> f = h5py.File('foo.hdf5','w')
>>> ds = f.create_dataset("EnumDS", (100,100), dtype=dt)
>>> ds.dtype.kind
'i'
>>> ds[0,:] = 42
>>> ds[0,0]
42
>>> ds[1,0]
0

h5py.enum_dtype(values_dict, basetype=np.uint8)
Create a NumPy representation of an HDF5 enumerated type

Parameters

• values_dict – Mapping of string names to integer values.

• basetype – An appropriate integer base dtype large enough to hold the possible options.

h5py.check_enum_dtype(dt)
Check if dt represents an enumerated type. Returns the values dict if it is, or None if not.

5.2. Special types 47

h5py Documentation, Release 3.10.0

5.2.5 Object and region references

References have their own section.

5.2.6 Storing other types as opaque data

New in version 3.0.

Numpy datetime64 and timedelta64 dtypes have no equivalent in HDF5 (the HDF5 time type is broken and deprecated).
h5py allows you to store such data with an HDF5 opaque type; it can be read back correctly by h5py, but won’t be
interoperable with other tools.

Here’s an example of storing and reading a datetime array:

>>> arr = np.array([np.datetime64('2019-09-22T17:38:30')])
>>> f['data'] = arr.astype(h5py.opaque_dtype(arr.dtype))
>>> print(f['data'][:])
['2019-09-22T17:38:30']

h5py.opaque_dtype(dt)
Return a dtype like the input, tagged to be stored as HDF5 opaque type.

h5py.check_opaque_dtype(dt)
Return True if the dtype given is tagged to be stored as HDF5 opaque data.

Note: With some exceptions, you can use opaque_dtype() with any numpy dtype. While this may seem like a
convenient way to get arbitrary data into HDF5, remember that it’s not a standard format. It’s better to fit your data into
HDF5’s native structures, or use a file format better suited to your data.

5.2.7 Older API

Before h5py 2.10, a single pair of functions was used to create and check for all of these special dtypes. These are still
available for backwards compatibility, but are deprecated in favour of the functions listed above.

h5py.special_dtype(**kwds)
Create a NumPy dtype object containing type hints. Only one keyword may be specified.

Parameters

• vlen – Base type for HDF5 variable-length datatype.

• enum – 2-tuple (basetype, values_dict). basetype must be an integer dtype;
values_dict is a dictionary mapping string names to integer values.

• ref – Provide class h5py.Reference or h5py.RegionReference to create a type repre-
senting object or region references respectively.

h5py.check_dtype(**kwds)
Determine if the given dtype object is a special type. Example:

>>> out = h5py.check_dtype(vlen=mydtype)
>>> if out is not None:
... print("Vlen of type %s" % out)
str

48 Chapter 5. Advanced topics

h5py Documentation, Release 3.10.0

Parameters

• vlen – Check for an HDF5 variable-length type; returns base class

• enum – Check for an enumerated type; returns 2-tuple (basetype, values_dict).

• ref – Check for an HDF5 object or region reference; returns either h5py.Reference or
h5py.RegionReference.

5.3 Strings in HDF5

Note: The rules around reading & writing string data were redesigned for h5py 3.0. Refer to the h5py 2.10 docs for
how to store strings in older versions.

5.3.1 Reading strings

String data in HDF5 datasets is read as bytes by default: bytes objects for variable-length strings, or numpy bytes
arrays ('S' dtypes) for fixed-length strings. Use Dataset.asstr() to retrieve str objects.

Variable-length strings in attributes are read as str objects. These are decoded as UTF-8 with surrogate escaping for
unrecognised bytes. Fixed-length strings are read as numpy bytes arrays, the same as for datasets.

5.3.2 Storing strings

When creating a new dataset or attribute, Python str or bytes objects will be treated as variable-length strings,
marked as UTF-8 and ASCII respectively. Numpy bytes arrays ('S' dtypes) make fixed-length strings. You can use
string_dtype() to explicitly specify any HDF5 string datatype.

When writing data to an existing dataset or attribute, data passed as bytes is written without checking the encoding.
Data passed as Python str objects is encoded as either ASCII or UTF-8, based on the HDF5 datatype. In either case,
null bytes ('\x00') in the data will cause an error.

Warning: Fixed-length string datasets will silently truncate longer strings which are written to them. Numpy byte
string arrays do the same thing.

Fixed-length strings in HDF5 hold a set number of bytes. It may take multiple bytes to store one character.

What about NumPy’s U type?

NumPy also has a Unicode type, a UTF-32 fixed-width format (4-byte characters). HDF5 has no support for wide
characters. Rather than trying to hack around this and “pretend” to support it, h5py will raise an error if you try to store
data of this type.

5.3. Strings in HDF5 49

https://docs.h5py.org/en/2.10.0/strings.html

h5py Documentation, Release 3.10.0

5.3.3 How to store raw binary data

If you have a non-text blob in a Python byte string (as opposed to ASCII or UTF-8 encoded text, which is fine), you
should wrap it in a void type for storage. This will map to the HDF5 OPAQUE datatype, and will prevent your blob
from getting mangled by the string machinery.

Here’s an example of how to store binary data in an attribute, and then recover it:

>>> binary_blob = b"Hello\x00Hello\x00"
>>> dset.attrs["attribute_name"] = np.void(binary_blob)
>>> out = dset.attrs["attribute_name"]
>>> binary_blob = out.tobytes()

5.3.4 Object names

Unicode strings are used exclusively for object names in the file:

>>> f.name
'/'

You can supply either byte or unicode strings when creating or retrieving objects. If a byte string is supplied, it will be
used as-is; Unicode strings will be encoded as UTF-8.

In the file, h5py uses the most-compatible representation; H5T_CSET_ASCII for characters in the ASCII range;
H5T_CSET_UTF8 otherwise.

>>> grp = f.create_dataset(b"name")
>>> grp2 = f.create_dataset("name2")

5.3.5 Encodings

HDF5 supports two string encodings: ASCII and UTF-8. We recommend using UTF-8 when creating HDF5 files,
and this is what h5py does by default with Python str objects. If you need to write ASCII for compatibility reasons,
you should ensure you only write pure ASCII characters (this can be done by your_string.encode("ascii")), as
otherwise your text may turn into mojibake. You can use string_dtype() to specify the encoding for string data.

See also:

Joel Spolsky’s introduction to Unicode & character sets If this section looks like gibberish, try this.

For reading, as long as the encoding metadata is correct, the defaults for Dataset.asstr()will always work. However,
HDF5 does not enforce the string encoding, and there are files where the encoding metadata doesn’t match what’s really
stored. Most commonly, data marked as ASCII may be in one of the many “Extended ASCII” encodings such as Latin-
1. If you know what encoding your data is in, you can specify this using Dataset.asstr(). If you have data in an
unknown encoding, you can also use any of the builtin python error handlers.

Variable-length strings in attributes are read as str objects, decoded as UTF-8 with the 'surrogateescape' error
handler. If an attribute is incorrectly encoded, you’ll see ‘surrogate’ characters such as '\udcb1' when reading it:

>>> s = "2.0±0.1"
>>> f.attrs["string_good"] = s # Good - h5py uses UTF-8
>>> f.attrs["string_bad"] = s.encode("latin-1") # Bad!
>>> f.attrs["string_bad"]
'2.0\udcb10.1'

50 Chapter 5. Advanced topics

https://en.wikipedia.org/wiki/Mojibake
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://docs.python.org/3/library/codecs.html#error-handlers

h5py Documentation, Release 3.10.0

To recover the original string, you’ll need to encode it with UTF-8, and then decode it with the correct encoding:

>>> f.attrs["string_bad"].encode('utf-8', 'surrogateescape').decode('latin-1')
'2.0±0.1'

Fixed length strings are different; h5py doesn’t try to decode them:

>>> s = "2.0±0.1"
>>> utf8_type = h5py.string_dtype('utf-8', 30)
>>> ascii_type = h5py.string_dtype('ascii', 30)
>>> f.attrs["fixed_good"] = np.array(s.encode("utf-8"), dtype=utf8_type)
>>> f.attrs["fixed_bad"] = np.array(s.encode("latin-1"), dtype=ascii_type)
>>> f.attrs["fixed_bad"]
b'2.0\xb10.1'
>>> f.attrs["fixed_bad"].decode("utf-8")
Traceback (most recent call last):
File "<input>", line 1, in <module>
f.attrs["fixed_bad"].decode("utf-8")

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb1 in position 3: invalid start␣
→˓byte
>>> f.attrs["fixed_bad"].decode("latin-1")
'2.0±0.1'

As we get bytes back, we only need to decode them with the correct encoding.

5.4 Object and Region References

In addition to soft and external links, HDF5 supplies one more mechanism to refer to objects and data in a file. HDF5
references are low-level pointers to other objects. The great advantage of references is that they can be stored and
retrieved as data; you can create an attribute or an entire dataset of reference type.

References come in two flavors, object references and region references. As the name suggests, object references point
to a particular object in a file, either a dataset, group or named datatype. Region references always point to a dataset,
and additionally contain information about a certain selection (dataset region) on that dataset. For example, if you have
a dataset representing an image, you could specify a region of interest, and store it as an attribute on the dataset.

5.4.1 Using object references

It’s trivial to create a new object reference; every high-level object in h5py has a read-only property “ref”, which when
accessed returns a new object reference:

>>> myfile = h5py.File('myfile.hdf5')
>>> mygroup = myfile['/some/group']
>>> ref = mygroup.ref
>>> print(ref)
<HDF5 object reference>

“Dereferencing” these objects is straightforward; use the same syntax as when opening any other object:

>>> mygroup2 = myfile[ref]
>>> print(mygroup2)
<HDF5 group "/some/group" (0 members)>

5.4. Object and Region References 51

h5py Documentation, Release 3.10.0

5.4.2 Using region references

Region references always contain a selection. You create them using the dataset property “regionref” and standard
NumPy slicing syntax:

>>> myds = myfile.create_dataset('dset', (200,200))
>>> regref = myds.regionref[0:10, 0:5]
>>> print(regref)
<HDF5 region reference>

The reference itself can now be used in place of slicing arguments to the dataset:

>>> subset = myds[regref]

For selections which don’t conform to a regular grid, h5py copies the behavior of NumPy’s fancy indexing, which
returns a 1D array. Note that for h5py release before 2.2, h5py always returns a 1D array.

In addition to storing a selection, region references inherit from object references, and can be used anywhere an object
reference is accepted. In this case the object they point to is the dataset used to create them.

5.4.3 Storing references in a dataset

HDF5 treats object and region references as data. Consequently, there is a special HDF5 type to represent them.
However, NumPy has no equivalent type. Rather than implement a special “reference type” for NumPy, references are
handled at the Python layer as plain, ordinary python objects. To NumPy they are represented with the “object” dtype
(kind ‘O’). A small amount of metadata attached to the dtype tells h5py to interpret the data as containing reference
objects.

These dtypes are available from h5py for references and region references:

• h5py.ref_dtype - for object references

• h5py.regionref_dtype - for region references

To store an array of references, use the appropriate dtype when creating the dataset:

>>> ref_dataset = myfile.create_dataset("MyRefs", (100,), dtype=h5py.ref_dtype)

You can read from and write to the array as normal:

>>> ref_dataset[0] = myfile.ref
>>> print(ref_dataset[0])
<HDF5 object reference>

5.4.4 Storing references in an attribute

Simply assign the reference to a name; h5py will figure it out and store it with the correct type:

>>> myref = myfile.ref
>>> myfile.attrs["Root group reference"] = myref

52 Chapter 5. Advanced topics

h5py Documentation, Release 3.10.0

5.4.5 Null references

When you create a dataset of reference type, the uninitialized elements are “null” references. H5py uses the truth value
of a reference object to indicate whether or not it is null:

>>> print(bool(myfile.ref))
True
>>> nullref = ref_dataset[50]
>>> print(bool(nullref))
False

5.5 Parallel HDF5

Read-only parallel access to HDF5 files works with no special preparation: each process should open the file indepen-
dently and read data normally (avoid opening the file and then forking).

Parallel HDF5 is a feature built on MPI which also supports writing an HDF5 file in parallel. To use this, both HDF5
and h5py must be compiled with MPI support turned on, as described below.

5.5.1 How does Parallel HDF5 work?

Parallel HDF5 is a configuration of the HDF5 library which lets you share open files across multiple parallel processes.
It uses the MPI (Message Passing Interface) standard for interprocess communication. Consequently, when using
Parallel HDF5 from Python, your application will also have to use the MPI library.

This is accomplished through the mpi4py Python package, which provides excellent, complete Python bindings for
MPI. Here’s an example “Hello World” using mpi4py:

>>> from mpi4py import MPI
>>> print("Hello World (from process %d)" % MPI.COMM_WORLD.Get_rank())

To run an MPI-based parallel program, use the mpiexec program to launch several parallel instances of Python:

$ mpiexec -n 4 python demo.py
Hello World (from process 1)
Hello World (from process 2)
Hello World (from process 3)
Hello World (from process 0)

The mpi4py package includes all kinds of mechanisms to share data between processes, synchronize, etc. It’s a different
flavor of parallelism than, say, threads or multiprocessing, but easy to get used to.

Check out the mpi4py web site for more information and a great tutorial.

5.5. Parallel HDF5 53

https://portal.hdfgroup.org/display/HDF5/Parallel+HDF5
http://mpi4py.scipy.org/
http://mpi4py.scipy.org/

h5py Documentation, Release 3.10.0

5.5.2 Building against Parallel HDF5

HDF5 must be built with at least the following options:

$./configure --enable-parallel --enable-shared

Note that --enable-shared is required.

Often, a “parallel” version of HDF5 will be available through your package manager. You can check to see what build
options were used by using the program h5cc:

$ h5cc -showconfig

Once you’ve got a Parallel-enabled build of HDF5, h5py has to be compiled in “MPI mode”. Set your default compiler
to the mpicc wrapper and build h5py with the HDF5_MPI environment variable:

$ export CC=mpicc
$ export HDF5_MPI="ON"
$ export HDF5_DIR="/path/to/parallel/hdf5" # If this isn't found by default
$ pip install .

5.5.3 Using Parallel HDF5 from h5py

The parallel features of HDF5 are mostly transparent. To open a file shared across multiple processes, use the mpio
file driver. Here’s an example program which opens a file, creates a single dataset and fills it with the process ID:

from mpi4py import MPI
import h5py

rank = MPI.COMM_WORLD.rank # The process ID (integer 0-3 for 4-process run)

f = h5py.File('parallel_test.hdf5', 'w', driver='mpio', comm=MPI.COMM_WORLD)

dset = f.create_dataset('test', (4,), dtype='i')
dset[rank] = rank

f.close()

Run the program:

$ mpiexec -n 4 python demo2.py

Looking at the file with h5dump:

$ h5dump parallel_test.hdf5
HDF5 "parallel_test.hdf5" {
GROUP "/" {

DATASET "test" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (4) / (4) }
DATA {
(0): 0, 1, 2, 3
}

(continues on next page)

54 Chapter 5. Advanced topics

h5py Documentation, Release 3.10.0

(continued from previous page)

}
}
}

5.5.4 Collective versus independent operations

MPI-based programs work by launching many instances of the Python interpreter, each of which runs your script. There
are certain requirements imposed on what each process can do. Certain operations in HDF5, for example, anything
which modifies the file metadata, must be performed by all processes. Other operations, for example, writing data to a
dataset, can be performed by some processes and not others.

These two classes are called collective and independent operations. Anything which modifies the structure or metadata
of a file must be done collectively. For example, when creating a group, each process must participate:

>>> grp = f.create_group('x') # right

>>> if rank == 1:
... grp = f.create_group('x') # wrong; all processes must do this

On the other hand, writing data to a dataset can be done independently:

>>> if rank > 2:
... dset[rank] = 42 # this is fine

5.5.5 MPI atomic mode

HDF5 supports the MPI “atomic” file access mode, which trades speed for more stringent consistency requirements.
Once you’ve opened a file with the mpio driver, you can place it in atomic mode using the settable atomic property:

>>> f = h5py.File('parallel_test.hdf5', 'w', driver='mpio', comm=MPI.COMM_WORLD)
>>> f.atomic = True

5.5.6 More information

Parallel HDF5 is a new feature in h5py. If you have any questions, feel free to ask on the mailing list (h5py at google
groups). We welcome bug reports, enhancements and general inquiries.

5.6 Single Writer Multiple Reader (SWMR)

Starting with version 2.5.0, h5py includes support for the HDF5 SWMR features.

5.6. Single Writer Multiple Reader (SWMR) 55

h5py Documentation, Release 3.10.0

5.6.1 What is SWMR?

The SWMR features allow simple concurrent reading of a HDF5 file while it is being written from another process.
Prior to this feature addition it was not possible to do this as the file data and meta-data would not be synchronised and
attempts to read a file which was open for writing would fail or result in garbage data.

A file which is being written to in SWMR mode is guaranteed to always be in a valid (non-corrupt) state for reading.
This has the added benefit of leaving a file in a valid state even if the writing application crashes before closing the file
properly.

This feature has been implemented to work with independent writer and reader processes. No synchronisation is
required between processes and it is up to the user to implement either a file polling mechanism, inotify or any other
IPC mechanism to notify when data has been written.

The SWMR functionality requires use of the latest HDF5 file format: v110. In practice this implies using at least
HDF5 1.10 (this can be checked via h5py.version.info) and setting the libver bounding to “latest” when opening
or creating the file.

Warning: New v110 format files are not compatible with v18 format. So, files written in SWMR mode with
libver=’latest’ cannot be opened with older versions of the HDF5 library (basically any version older than the
SWMR feature).

The HDF Group has documented the SWMR features in details on the website: Single-Writer/Multiple-Reader
(SWMR) Documentation. This is highly recommended reading for anyone intending to use the SWMR feature even
through h5py. For production systems in particular pay attention to the file system requirements regarding POSIX I/O
semantics.

5.6.2 Using the SWMR feature from h5py

The following basic steps are typically required by writer and reader processes:

• Writer process creates the target file and all groups, datasets and attributes.

• Writer process switches file into SWMR mode.

• Reader process can open the file with swmr=True.

• Writer writes and/or appends data to existing datasets (new groups and datasets cannot be created when in SWMR
mode).

• Writer regularly flushes the target dataset to make it visible to reader processes.

• Reader refreshes target dataset before reading new meta-data and/or main data.

• Writer eventually completes and close the file as normal.

• Reader can finish and close file as normal whenever it is convenient.

The following snippet demonstrate a SWMR writer appending to a single dataset:

f = h5py.File("swmr.h5", 'w', libver='latest')
arr = np.array([1,2,3,4])
dset = f.create_dataset("data", chunks=(2,), maxshape=(None,), data=arr)
f.swmr_mode = True
Now it is safe for the reader to open the swmr.h5 file
for i in range(5):

new_shape = ((i+1) * len(arr),)
(continues on next page)

56 Chapter 5. Advanced topics

https://support.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesSwmrDocs.html
https://support.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesSwmrDocs.html

h5py Documentation, Release 3.10.0

(continued from previous page)

dset.resize(new_shape)
dset[i*len(arr):] = arr
dset.flush()
Notify the reader process that new data has been written

The following snippet demonstrate how to monitor a dataset as a SWMR reader:

f = h5py.File("swmr.h5", 'r', libver='latest', swmr=True)
dset = f["data"]
while True:

dset.id.refresh()
shape = dset.shape
print(shape)

5.6.3 Examples

In addition to the above example snippets, a few more complete examples can be found in the examples folder. These
examples are described in the following sections.

Dataset monitor with inotify

The inotify example demonstrates how to use SWMR in a reading application which monitors live progress as a dataset
is being written by another process. This example uses the the linux inotify (pyinotify python bindings) to receive a
signal each time the target file has been updated.

"""
Demonstrate the use of h5py in SWMR mode to monitor the growth of a dataset
on notification of file modifications.

This demo uses pyinotify as a wrapper of Linux inotify.
https://pypi.python.org/pypi/pyinotify

Usage:
swmr_inotify_example.py [FILENAME [DATASETNAME]]

FILENAME: name of file to monitor. Default: swmr.h5
DATASETNAME: name of dataset to monitor in DATAFILE. Default: data

This script will open the file in SWMR mode and monitor the shape of the
dataset on every write event (from inotify). If another application is
concurrently writing data to the file, the writer must have have switched
the file into SWMR mode before this script can open the file.

"""
import asyncore
import pyinotify
import sys
import h5py
import logging

(continues on next page)

5.6. Single Writer Multiple Reader (SWMR) 57

https://pypi.python.org/pypi/pyinotify

h5py Documentation, Release 3.10.0

(continued from previous page)

#assert h5py.version.hdf5_version_tuple >= (1,9,178), "SWMR requires HDF5 version >= 1.9.
→˓178"

class EventHandler(pyinotify.ProcessEvent):

def monitor_dataset(self, filename, datasetname):
logging.info("Opening file %s", filename)
self.f = h5py.File(filename, 'r', libver='latest', swmr=True)
logging.debug("Looking up dataset %s"%datasetname)
self.dset = self.f[datasetname]

self.get_dset_shape()

def get_dset_shape(self):
logging.debug("Refreshing dataset")
self.dset.refresh()

logging.debug("Getting shape")
shape = self.dset.shape
logging.info("Read data shape: %s"%str(shape))
return shape

def read_dataset(self, latest):
logging.info("Reading out dataset [%d]"%latest)
self.dset[latest:]

def process_IN_MODIFY(self, event):
logging.debug("File modified!")
shape = self.get_dset_shape()
self.read_dataset(shape[0])

def process_IN_CLOSE_WRITE(self, event):
logging.info("File writer closed file")
self.get_dset_shape()
logging.debug("Good bye!")
sys.exit(0)

if __name__ == "__main__":
logging.basicConfig(format='%(asctime)s %(levelname)s\t%(message)s',level=logging.

→˓INFO)

file_name = "swmr.h5"
if len(sys.argv) > 1:

file_name = sys.argv[1]
dataset_name = "data"
if len(sys.argv) > 2:

dataset_name = sys.argv[2]

wm = pyinotify.WatchManager() # Watch Manager
mask = pyinotify.IN_MODIFY | pyinotify.IN_CLOSE_WRITE

(continues on next page)

58 Chapter 5. Advanced topics

h5py Documentation, Release 3.10.0

(continued from previous page)

evh = EventHandler()
evh.monitor_dataset(file_name, dataset_name)

notifier = pyinotify.AsyncNotifier(wm, evh)
wdd = wm.add_watch(file_name, mask, rec=False)

Sit in this loop() until the file writer closes the file
or the user hits ctrl-c
asyncore.loop()

Multiprocess concurrent write and read

The SWMR multiprocess example starts two concurrent child processes: a writer and a reader. The writer process first
creates the target file and dataset. Then it switches the file into SWMR mode and the reader process is notified (with a
multiprocessing.Event) that it is safe to open the file for reading.

The writer process then continue to append chunks to the dataset. After each write it notifies the reader that new data
has been written. Whether the new data is visible in the file at this point is subject to OS and file system latencies.

The reader first waits for the initial “SWMR mode” notification from the writer, upon which it goes into a loop where
it waits for further notifications from the writer. The reader may drop some notifications, but for each one received it
will refresh the dataset and read the dimensions. After a time-out it will drop out of the loop and exit.

"""
Demonstrate the use of h5py in SWMR mode to write to a dataset (appending)
from one process while monitoring the growing dataset from another process.

Usage:
swmr_multiprocess.py [FILENAME [DATASETNAME]]

FILENAME: name of file to monitor. Default: swmrmp.h5
DATASETNAME: name of dataset to monitor in DATAFILE. Default: data

This script will start up two processes: a writer and a reader. The writer
will open/create the file (FILENAME) in SWMR mode, create a dataset and start
appending data to it. After each append the dataset is flushed and an event
sent to the reader process. Meanwhile the reader process will wait for events
from the writer and when triggered it will refresh the dataset and read the
current shape of it.

"""

import sys
import h5py
import numpy as np
import logging
from multiprocessing import Process, Event

class SwmrReader(Process):
def __init__(self, event, fname, dsetname, timeout = 2.0):

super().__init__()
self._event = event
self._fname = fname

(continues on next page)

5.6. Single Writer Multiple Reader (SWMR) 59

h5py Documentation, Release 3.10.0

(continued from previous page)

self._dsetname = dsetname
self._timeout = timeout

def run(self):
self.log = logging.getLogger('reader')
self.log.info("Waiting for initial event")
assert self._event.wait(self._timeout)
self._event.clear()

self.log.info("Opening file %s", self._fname)
f = h5py.File(self._fname, 'r', libver='latest', swmr=True)
assert f.swmr_mode
dset = f[self._dsetname]
try:

monitor and read loop
while self._event.wait(self._timeout):

self._event.clear()
self.log.debug("Refreshing dataset")
dset.refresh()

shape = dset.shape
self.log.info("Read dset shape: %s"%str(shape))

finally:
f.close()

class SwmrWriter(Process):
def __init__(self, event, fname, dsetname):

super().__init__()
self._event = event
self._fname = fname
self._dsetname = dsetname

def run(self):
self.log = logging.getLogger('writer')
self.log.info("Creating file %s", self._fname)
f = h5py.File(self._fname, 'w', libver='latest')
try:

arr = np.array([1,2,3,4])
dset = f.create_dataset(self._dsetname, chunks=(2,), maxshape=(None,),␣

→˓data=arr)
assert not f.swmr_mode

self.log.info("SWMR mode")
f.swmr_mode = True
assert f.swmr_mode
self.log.debug("Sending initial event")
self._event.set()

Write loop
for i in range(5):

new_shape = ((i+1) * len(arr),)
self.log.info("Resizing dset shape: %s"%str(new_shape))

(continues on next page)

60 Chapter 5. Advanced topics

h5py Documentation, Release 3.10.0

(continued from previous page)

dset.resize(new_shape)
self.log.debug("Writing data")
dset[i*len(arr):] = arr
#dset.write_direct(arr, np.s_[:], np.s_[i*len(arr):])
self.log.debug("Flushing data")
dset.flush()
self.log.info("Sending event")
self._event.set()

finally:
f.close()

if __name__ == "__main__":
logging.basicConfig(format='%(levelname)10s %(asctime)s %(name)10s %(message)s',

→˓level=logging.INFO)
fname = 'swmrmp.h5'
dsetname = 'data'
if len(sys.argv) > 1:

fname = sys.argv[1]
if len(sys.argv) > 2:

dsetname = sys.argv[2]

event = Event()
reader = SwmrReader(event, fname, dsetname)
writer = SwmrWriter(event, fname, dsetname)

logging.info("Starting reader")
reader.start()
logging.info("Starting reader")
writer.start()

logging.info("Waiting for writer to finish")
writer.join()
logging.info("Waiting for reader to finish")
reader.join()

The example output below (from a virtual Ubuntu machine) illustrate some latency between the writer and reader:

python examples/swmr_multiprocess.py
INFO 2015-02-26 18:05:03,195 root Starting reader
INFO 2015-02-26 18:05:03,196 root Starting reader
INFO 2015-02-26 18:05:03,197 reader Waiting for initial event
INFO 2015-02-26 18:05:03,197 root Waiting for writer to finish
INFO 2015-02-26 18:05:03,198 writer Creating file swmrmp.h5
INFO 2015-02-26 18:05:03,203 writer SWMR mode
INFO 2015-02-26 18:05:03,205 reader Opening file swmrmp.h5
INFO 2015-02-26 18:05:03,210 writer Resizing dset shape: (4,)
INFO 2015-02-26 18:05:03,212 writer Sending event
INFO 2015-02-26 18:05:03,213 reader Read dset shape: (4,)
INFO 2015-02-26 18:05:03,214 writer Resizing dset shape: (8,)
INFO 2015-02-26 18:05:03,214 writer Sending event
INFO 2015-02-26 18:05:03,215 writer Resizing dset shape: (12,)

(continues on next page)

5.6. Single Writer Multiple Reader (SWMR) 61

h5py Documentation, Release 3.10.0

(continued from previous page)

INFO 2015-02-26 18:05:03,215 writer Sending event
INFO 2015-02-26 18:05:03,215 writer Resizing dset shape: (16,)
INFO 2015-02-26 18:05:03,215 reader Read dset shape: (12,)
INFO 2015-02-26 18:05:03,216 writer Sending event
INFO 2015-02-26 18:05:03,216 writer Resizing dset shape: (20,)
INFO 2015-02-26 18:05:03,216 reader Read dset shape: (16,)
INFO 2015-02-26 18:05:03,217 writer Sending event
INFO 2015-02-26 18:05:03,217 reader Read dset shape: (20,)
INFO 2015-02-26 18:05:03,218 reader Read dset shape: (20,)
INFO 2015-02-26 18:05:03,219 root Waiting for reader to finish

5.7 Virtual Datasets (VDS)

Starting with version 2.9, h5py includes high-level support for HDF5 ‘virtual datasets’. The VDS feature is available
in version 1.10 of the HDF5 library; h5py must be built with a new enough version of HDF5 to create or read virtual
datasets.

5.7.1 What are virtual datasets?

Virtual datasets allow a number of real datasets to be mapped together into a single, sliceable dataset via an interface
layer. The mapping can be made ahead of time, before the parent files are written, and is transparent to the parent
dataset characteristics (SWMR, chunking, compression etc. . .). The datasets can be meshed in arbitrary combinations,
and even the data type converted.

Once a virtual dataset has been created, it can be read just like any other HDF5 dataset.

Warning: Virtual dataset files cannot be opened with versions of the hdf5 library older than 1.10.

The HDF Group has documented the VDS features in detail on the website: Virtual Datasets (VDS) Documentation.

5.7.2 Creating virtual datasets in h5py

To make a virtual dataset using h5py, you need to:

1. Create a VirtualLayout object representing the dimensions and data type of the virtual dataset.

2. Create a number of VirtualSource objects, representing the datasets the array will be built from. These objects
can be created either from an h5py Dataset, or from a filename, dataset name and shape. This can be done even
before the source file exists.

3. Map slices from the sources into the layout.

4. Convert the VirtualLayout object into a virtual dataset in an HDF5 file.

The following snippet creates a virtual dataset to stack together four 1D datasets from separate files into a 2D dataset:

layout = h5py.VirtualLayout(shape=(4, 100), dtype='i4')

for n in range(1, 5):
filename = "{}.h5".format(n)

(continues on next page)

62 Chapter 5. Advanced topics

https://support.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesVirtualDatasetDocs.html

h5py Documentation, Release 3.10.0

(continued from previous page)

vsource = h5py.VirtualSource(filename, 'data', shape=(100,))
layout[n - 1] = vsource

Add virtual dataset to output file
with h5py.File("VDS.h5", 'w', libver='latest') as f:

f.create_virtual_dataset('data', layout, fillvalue=-5)

This is an extract from the vds_simple.py example in the examples folder.

Note: Slices up to h5py.h5s.UNLIMITED can be used to create an unlimited selection along a single axis. Resizing
the source data along this axis will cause the virtual dataset to grow. E.g.:

layout[n - 1, :UNLIMITED] = vsource[:UNLIMITED]

A normal slice with no defined end point ([:]) is fixed based on the shape when you define it.

New in version 3.0.

5.7.3 Examples

In addition to the above example snippet, a few more complete examples can be found in the examples folder:

• vds_simple.py is a self-contained, runnable example which creates four source files, and then maps them into a
virtual dataset as shown above.

• dataset_concatenation.py illustrates virtually stacking datasets together along a new axis.

• A number of examples are based on the sample use cases presented in the virtual datasets RFC:

– excalibur_detector_modules.py

– dual_pco_edge.py

– eiger_use_case.py

– percival_use_case.py

5.7.4 Reference

class h5py.VirtualLayout(shape, dtype, maxshape=None)
Object for building a virtual dataset.

Instantiate this class to define a virtual dataset, assign VirtualSource objects to slices of it, and then pass it to
Group.create_virtual_dataset() to add the virtual dataset to a file.

This class does not allow access to the data; the virtual dataset must be created in a file before it can be used.

Parameters

• shape (tuple) – The full shape of the virtual dataset.

• dtype – Numpy dtype or string.

• maxshape (tuple) – The virtual dataset is resizable up to this shape. Use None for axes you
want to be unlimited.

5.7. Virtual Datasets (VDS) 63

https://github.com/h5py/h5py/blob/master/examples/vds_simple.py
https://github.com/h5py/h5py/blob/master/examples/dataset_concatenation.py
https://support.hdfgroup.org/HDF5/docNewFeatures/VDS/HDF5-VDS-requirements-use-cases-2014-12-10.pdf
https://github.com/h5py/h5py/blob/master/examples/excalibur_detector_modules.py
https://github.com/h5py/h5py/blob/master/examples/dual_pco_edge.py
https://github.com/h5py/h5py/blob/master/examples/eiger_use_case.py
https://github.com/h5py/h5py/blob/master/examples/percival_use_case.py

h5py Documentation, Release 3.10.0

class h5py.VirtualSource(path_or_dataset, name=None, shape=None, dtype=None, maxshape=None)
Source definition for virtual data sets.

Instantiate this class to represent an entire source dataset, and then slice it to indicate which regions should be
used in the virtual dataset.

When creating a virtual dataset, paths to sources present in the same file are changed to a “.”, refering to the
current file (see H5Pset_virtual). This will keep such sources valid in case the file is renamed.

Parameters

• path_or_dataset – The path to a file, or a Dataset object. If a dataset is given, no other
parameters are allowed, as the relevant values are taken from the dataset instead.

• name (str) – The name of the source dataset within the file.

• shape (tuple) – The full shape of the source dataset.

• dtype – Numpy dtype or string.

• maxshape (tuple) – The source dataset is resizable up to this shape. Use None for axes you
want to be unlimited.

5.8 Tools and Related Projects

There are a number of projects which build upon h5py, or who build upon HDF5, which will likely be of interest to
users of h5py. This page is non-exhaustive, but if you think there should be a project added, feel free to create an issue
or pull request at https://github.com/h5py/h5py/.

PyTables is the most significant related project, providing a higher level wrapper around HDF5 then h5py, and optimised
to fully take advantage of some of HDF5’s features. h5py provides a comparison between the two projects (see What’s
the difference between h5py and PyTables?), as does the PyTables project.

See also:

HDF Group’s list of HDF5 tools

• IPython

• Exploring and Visualising HDF5 files

• Additional Filters

• Libraries extending h5py

5.8.1 IPython

H5py ships with a custom ipython completer, which provides object introspection and tab completion for h5py objects
in an ipython session. For example, if a file contains 3 groups, “foo”, “bar”, and “baz”:

In [4]: f['b<TAB>
bar baz

In [4]: f['f<TAB>
Completes to:
In [4]: f['foo'

(continues on next page)

64 Chapter 5. Advanced topics

https://portal.hdfgroup.org/display/HDF5/H5P_SET_VIRTUAL
https://github.com/h5py/h5py/
https://www.pytables.org/
https://www.pytables.org/FAQ.html#how-does-pytables-compare-with-the-h5py-project
https://portal.hdfgroup.org/display/HDF5/HDF5+Tools+by+Category

h5py Documentation, Release 3.10.0

(continued from previous page)

In [4]: f['foo'].<TAB>
f['foo'].attrs f['foo'].items f['foo'].ref
f['foo'].copy f['foo'].iteritems f['foo'].require_dataset
f['foo'].create_dataset f['foo'].iterkeys f['foo'].require_group
f['foo'].create_group f['foo'].itervalues f['foo'].values
f['foo'].file f['foo'].keys f['foo'].visit
f['foo'].get f['foo'].name f['foo'].visititems
f['foo'].id f['foo'].parent

The easiest way to enable the custom completer is to do the following in an IPython session:

In [1]: import h5py

In [2]: h5py.enable_ipython_completer()

The completer can be enabled for every session by adding “h5py.ipy_completer” to the list of extensions in your ipython
config file, for example ~/.config/ipython/profile_default/ipython_config.py (if this file does not exist,
you can create it by invoking ipython profile create):

c = get_config()
c.InteractiveShellApp.extensions = ['h5py.ipy_completer']

5.8.2 Exploring and Visualising HDF5 files

h5py does not contain a tool for exploring or visualising HDF5 files, but tools that can display the structure of h5py
include:

• HDFView is a visual tool for browsing and editing HDF5 files.

• ViTables is a GUI for browsing and editing files in both PyTables and HDF5 formats, and is built on top of
PyTables.

• h5glance shows the structure of HDF5 files in IPython & Jupyter, as well as at the command line.

See also:

The PaNOSC project’s list of HDF5 & NeXus viewers

5.8.3 Additional Filters

Some projects providing additional HDF5 filter with integration into h5py include:

• hdf5plugin: this provides several plugins (currently blosc, bitshuffle, lz4, FCIDECOMP and ZFP), and newer
plugins should look to supporting h5py via inclusion into hdf5plugin.

5.8. Tools and Related Projects 65

https://confluence.hdfgroup.org/display/HDFVIEW/HDFView
https://vitables.org/
https://github.com/European-XFEL/h5glance
https://github.com/panosc-eu/panosc/blob/master/Work%20Packages/WP4%20Data%20analysis%20services/resources/hdf5-viewers.rst
https://github.com/silx-kit/hdf5plugin

h5py Documentation, Release 3.10.0

5.8.4 Libraries extending h5py

These libraries offer additional general functionality on top of h5py:

• Versioned HDF5 offers a versioned abstraction on top of h5py. It provides a wrapper around the h5py API that
allows storing different versions of groups and datasets within an HDF5 file.

• h5preserve lets you define how to save and load instances of a given class in HDF5 files, by writing dumper and
loader functions. These functions can also have multiple versions.

• Hickle provides an API like pickle to dump & load arbitrary Python objects in HDF5 files.

• h5pickle wraps h5py to allow pickling objects such as File or Dataset. This relies on the file being available
at the same path when unpickling.

66 Chapter 5. Advanced topics

https://deshaw.github.io/versioned-hdf5/
https://github.com/h5preserve/h5preserve
https://github.com/telegraphic/hickle
https://github.com/DaanVanVugt/h5pickle

CHAPTER

SIX

META-INFO ABOUT THE H5PY PROJECT

6.1 “What’s new” documents

These document the changes between minor (or major) versions of h5py.

6.1.1 What’s new in h5py 3.10

New features

• h5py now has pre-built packages for Python 3.12.

• Pre-built packages on Linux & Windows now bundle HDF5 version 1.14.2. Mac packages still contain HDF5
1.12.2 for now. You can still build h5py from source against a wider range of HDF5 versions.

• The read-only S3 file driver (‘ros3’) now accepts an AWS session token as part of the credentials (PR 2301).
Pass session_token when opening a File (along with the other S3 parameters). This requires HDF5 1.14.2
or later, with the ROS3 feature built.

Deprecations & removals

• Support for the HDF5 1.8 series was dropped, along with early 1.10 releases. The minimum required HDF5
version is now 1.10.4.

Exposing HDF5 functions

• H5Pget_fapl_ros3_token & H5Pset_fapl_ros3_token

Bug fixes

• Various nasty bugs when using nested compound and vlen data types have been fixed (PR 2134).

• Fixed an OverflowError in some cases when registering a filter with h5z.register_filter(), especially
on 32-bit architectures (PR 2318).

• Sequential slicing/indexing operations on a VirtualSource object (e.g. source[:10][::2]) now raise an
error, rather than giving incorrect results (PR 2280).

67

https://github.com/h5py/h5py/pull/2301
https://github.com/h5py/h5py/pull/2134
https://github.com/h5py/h5py/pull/2318
https://github.com/h5py/h5py/pull/2280

h5py Documentation, Release 3.10.0

Building h5py

• h5py now uses HDF5’s 1.10 compatibility mode at compile time rather than the 1.8 compatibility mode (PR
2320). This is normally transparent even if you’re building h5py from source.

6.1.2 What’s new in h5py 3.9

This version of h5py requires Python 3.8 or above.

New features

• New out argument to read_direct_chunk() to allow passing the output buffer (PR 2232).

• The objects from Dataset.asstr() and Dataset.astype() now implement the __array__() method (PR
2269). This speeds up access for functions that support it, such as np.asarray().

• Validate key types when creating groups and attributes, giving better error messages when invalid types are used
(PR 2266).

Deprecations & removals

• Using Dataset.astype() as a context manager has been removed, after being deprecated in h5py 3.6. Read
data by slicing the returned object instead: dset.astype('f4')[:].

Exposing HDF5 functions

• H5Pget_elink_acc_flags & H5Pset_elink_acc_flags as h5py.h5p.PropLAID.
get_elink_acc_flags() & h5py.h5p.PropLAID.set_elink_acc_flags(): access the external
link file access traversal flags in a link access property list (PR 2244).

• H5Zregister as h5py.h5z.register_filter(): register an HDF5 filter (PR 2229).

Bug fixes

• Group.__contains__ and Group.get now use the default link access property list systematically (PR 2244).

• Removed various calls to the deprecated numpy.product function (PR 2242 & PR 2273).

• Fix the IPython tab-completion integration in IPython 8.12 (:pr:2256`).

• Replacing attributes with AttributeManager.create() now deletes the old attributes before creating the new
one, rather than using a temporary name and renaming the new attribute (PR 2274). This should avoid some
confusing bugs affecting attributes. However, failures creating an attribute are less likely to leave an existing
attribute of the same name in place. To change an attribute value without changing its shape or dtype, use
modify() instead.

68 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/pull/2320
https://github.com/h5py/h5py/pull/2320
https://api.h5py.org/h5d.html#h5py.h5d.DatasetID.read_direct_chunk
https://github.com/h5py/h5py/pull/2232
https://github.com/h5py/h5py/pull/2269
https://github.com/h5py/h5py/pull/2269
https://github.com/h5py/h5py/pull/2266
https://api.h5py.org/h5p.html#h5py.h5p.PropLAID.get_elink_acc_flags
https://api.h5py.org/h5p.html#h5py.h5p.PropLAID.get_elink_acc_flags
https://api.h5py.org/h5p.html#h5py.h5p.PropLAID.set_elink_acc_flags
https://github.com/h5py/h5py/pull/2244
https://api.h5py.org/h5z.html#h5py.h5z.register_filter
https://github.com/h5py/h5py/pull/2229
https://github.com/h5py/h5py/pull/2244
https://github.com/h5py/h5py/pull/2242
https://github.com/h5py/h5py/pull/2273
https://github.com/h5py/h5py/pull/2274

h5py Documentation, Release 3.10.0

Building h5py

• When building with Parallel HDF5 support, the version of mpi4py used on various Python versions is increased
to 3.1.1, fixing building with a newer setuptools (PR 2225).

• Some fixes towards compatibility with the upcoming Cython 3 (PR 2247).

6.1.3 What’s new in h5py 3.8

New features

• h5py now has pre-built packages for Python 3.11.

• h5py is compatible with HDF5 1.14 (PR 2187). Pre-built packages on PyPI still include HDF5 1.12 for now.

• Fancy indexing now accepts tuples, or any other sequence type, rather than only lists and NumPy arrays. This
also includes range objects, but this will normally be less efficient than the equivalent slice.

• New property Dataset.is_scale for checking if the dataset is a dimension scale (PR 2168).

• Group.require_dataset() now validates maxshape for resizable datasets (PR 2116).

• File now has a meta_block_size argument and property. This influences how the space for metadata, includ-
ing the initial header, is allocated.

• Chunk cache can be configured per individual HDF5 dataset (PR 2127). Use Group.create_dataset()
for new datasets or Group.require_dataset() for already existing datasets. Any combination of the
rdcc_nbytes, rdcc_w0, and rdcc_nslots arguments is allowed. The file defaults apply to those omitted.

• HDF5 file names for ros3 driver can now also be s3:// resource locations (PR 2140). h5py will translate them
into AWS path-style URLs for use by the driver.

• When using the ros3 driver, AWS authentication will be activated only if all three driver arguments are provided.
Previously AWS authentication was active if any one of the arguments was set causing an error from the HDF5
library.

• Dataset.fields() now implements the __array__() method (PR 2151). This speeds up accessing fields
with functions that expect this, like np.asarray().

• Low-level h5py.h5d.DatasetID.chunk_iter() method that invokes a user-supplied callable object on every
written chunk of one dataset (PR 2202). It provides much better performance when iterating over a large number
of chunks.

Exposing HDF5 functions

• H5Dchunk_iter as h5py.h5d.DatasetID.chunk_iter().

• H5Pset_meta_block_size and H5Pget_meta_block_size (PR 2106).

6.1. “What’s new” documents 69

https://github.com/h5py/h5py/pull/2225
https://github.com/h5py/h5py/pull/2247
https://github.com/h5py/h5py/pull/2187
https://github.com/h5py/h5py/pull/2168
https://github.com/h5py/h5py/pull/2116
https://github.com/h5py/h5py/pull/2127
https://github.com/h5py/h5py/pull/2140
https://github.com/h5py/h5py/pull/2151
https://github.com/h5py/h5py/pull/2202
https://portal.hdfgroup.org/display/HDF5/H5P_SET_META_BLOCK_SIZE
https://portal.hdfgroup.org/display/HDF5/H5P_GET_META_BLOCK_SIZE
https://github.com/h5py/h5py/pull/2106

h5py Documentation, Release 3.10.0

Bug fixes

• Fixed getting the default fill value (an empty string) for variable-length string data (PR 2132).

• Complex float16 data could cause a TypeError when trying to coerce to the currently unavailable
numpy.dtype(‘c4’). Now a compound type is used instead (PR 2157).

• h5py 3.7 contained a performance regression when using a boolean mask array to index a 1D dataset, which is
now fixed (PR 2193).

Building h5py

• Parallel HDF5 can be built with Microsoft MS-MPI (PR 2147). See Building against Parallel HDF5 for details.

• Some ‘incompatible function pointer type’ compile time warnings were fixed (PR 2142).

• Fix for finding HDF5 DLL in mingw (PR 2105).

6.1.4 What’s new in h5py 3.7

New features

• Both Apple Silicon (arm64) and Intel (x86_64) Mac wheels are now provided (PR 2065). Apple Silicon wheels
are not automatically tested, however, as we’re not aware of any CI offerings that do this.

• Provide the ability to use the Direct Virtual File Driver (VFD) from HDF5 (Linux only). If the Direct VFD
driver is present at the time of compilation, users can use the Direct VFD by passing the keyword argument
driver="direct" to the h5py.File constructor.

To use the Direct VFD, HDF5 and h5py must have both been compiled with this enabled. Currently, pre-built
h5py wheels on PyPI do not include the Direct VFD. Other packages such as the conda package on conda-forge
might include it. Alternatively, you can build h5py from source against an HDF5 build with the direct driver
enabled.

• The File constructor contains two new parameters alignment_threshold, and alignment_interval con-
troling the data alignment within the HDF5 file (PR 2040).

• create_dataset() and require_dataset() now accept parameters efile_prefix and virtual_prefix
to set a filesystem path prefix to use to find files for external datasets and for virtual dataset sources (PR 2092).
These only affect the current access; the prefix is not stored in the file.

• h5py wheels on PyPI now bundle HDF5 version 1.12.2 (PR 2099).

• h5py Mac wheels on PyPI now bundle zlib version 1.2.12 (PR 2082).

• Pre-built wheels are now available for Python 3.10 on Linux ARM64 (PR 2094).

Bug fixes

• Fix a deadlock which was possible when the same dataset was accessed from multiple threads (GH2064).

• New attributes are created directly, instead of via a temporary attribute with subsequent renaming. This fixes
overwriting attributes with track_order=True.

• Fix for building with mpi4py on Python 3.10 (PR 2101).

• Fixed fancy indexing with a boolean array for a single dimension (PR 2079).

70 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/pull/2132
https://github.com/h5py/h5py/pull/2157
https://github.com/h5py/h5py/pull/2193
https://github.com/h5py/h5py/pull/2147
https://github.com/h5py/h5py/pull/2142
https://github.com/h5py/h5py/pull/2105
https://github.com/h5py/h5py/pull/2065
https://github.com/h5py/h5py/pull/2040
https://github.com/h5py/h5py/pull/2092
https://github.com/h5py/h5py/pull/2099
https://github.com/h5py/h5py/pull/2082
https://github.com/h5py/h5py/pull/2094
https://github.com/h5py/h5py/issues/2064
https://github.com/h5py/h5py/pull/2101
https://github.com/h5py/h5py/pull/2079

h5py Documentation, Release 3.10.0

• Avoid returning unitialised memory when reading from a chunked dataset with missing chunks and no fill value
(PR 2076).

• Enable setting of fillvalue for datasets with variable length string dtype (PR 2044).

• Closing a file or calling get_obj_ids() no longer re-enables Python garbage collection if it was previously
disabled (PR 2020).

Exposing HDF5 functions

• H5Pset_efile_prefix and H5Pget_efile_prefix

Building h5py

• Fix for building h5py on Cygwin (PR 2038).

• More helpful error message when pkg-config is unavailable (PR 2053).

6.1.5 What’s new in h5py 3.6

New features

• Pre-built packages are now available for Python 3.10.

Deprecations

• Using Dataset.astype() as a context manager (with dset.astype(t):) is deprecated. Slice the object
returned by astype instead (data = dset.astype(t)[:10]). This works from h5py 3.0 onwards.

• Getting the value of h5py.get_config().default_file_mode now issues a deprecation warning. This has
been 'r' by default from h5py 3.0, and cannot be changed since 3.3.

Building h5py

• h5py now requires the oldest-supported-numpy package at build time, instead of maintaining its own list of
the oldest supported NumPy versions. The effect should be similar, but hopefully more reliable.

Development

• The custom setup.py test has been removed. tox should be used instead during development (see Run the
tests), and pytest --pyargs h5py can be used to test h5py after installation.

6.1. “What’s new” documents 71

https://github.com/h5py/h5py/pull/2076
https://github.com/h5py/h5py/pull/2044
https://github.com/h5py/h5py/pull/2020
https://github.com/h5py/h5py/pull/2038
https://github.com/h5py/h5py/pull/2053
https://tox.wiki/en/latest/

h5py Documentation, Release 3.10.0

6.1.6 What’s new in h5py 3.5

New features

• Datasets are now created without timestamps by default, making it easier to create more consistent files. Pass
track_times=True to Group.create_dataset() to add timestamps again.

• Added locking File argument to select HDF5 file locking behavior.

• Enable setting file space page size when creating new HDF5 files. A new named argument fs_page_size is
added to the File class.

• Enable HDF5 page buffering, a low-level caching feature that may improve overall I/O performance in some
cases. Three new named arguments are added to the File class: page_buf_size, min_meta_keep, and
min_raw_keep.

• Get and reset HDF5 page buffering statistics. Available as the low-level API of the FileID class.

• The built-in reversed() function now works with various dictionary-like interfaces: Group, GroupID, Group.
keys(), Group.values() and Group.items().

Exposing HDF5 functions

• H5Pset_file_locking and H5Pget_file_locking (for HDF5 >= 1.12.1 or 1.10.x >= 1.10.7)

• H5Freset_page_buffering_stats

• H5Fget_page_buffering_stats

• H5Pset_file_space_page_size

• H5Pget_file_space_page_size

• H5Pset_page_buffer_size

• H5Pget_page_buffer_size

Breaking changes & deprecations

• Dataset timestamps are no longer written by default for new datasets. Pass track_times=True to Group.
create_dataset() if you need them.

• The IPython completer code no longer tries to work with very old versions of IPython (before 1.0).

Bug fixes

• Fix a memory leak when reading data. This particularly affected code making many small reads.

• dataset == array now behaves the same way as array == dataset: the HDF5 dataset is read and NumPy
makes a boolean array.

• The IPython completer code no longer imports the readline module.

72 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 3.10.0

6.1.7 What’s new in h5py 3.4

New features

• The pre-built wheels now bundle HDF5 1.12.1 (PR 1945).

• len() now works on dset.astype(), .asstr() and .fields() wrappers (PR 1913).

Bug fixes

• Fix bug introduced in version 3.3 that did not allow the creation of files using the flag “a” for certain drivers (e.g.
mpiio, core and stdio) (PR 1922).

• Dataset indexing will now use the optimized fast path, which was accidentally disabled in a previous version (PR
1944).

• Fix an error building with Cython 3.0 alpha 8 (cpdef inside functions) (PR 1923).

6.1.8 What’s new in h5py 3.3

New features

• Compatibility with the upcoming HDF5 1.12.1 and possibly 1.14 (PR 1875).

• H5T_BITFIELD types will now be cast to their numpy.uint equivalent by default (GH1258). This means that
no knowledge of mixed type compound dataset schemas is required to read these types, and can simply be read
as follows:

arr = dset[:]

Alternatively, 8-bit bitfields can still be cast to booleans explicitly:

arr = dset.astype(numpy.bool_)[:]

• Key types are validated when accessing groups, to give more helpful errors when a group is indexed like a dataset
(PR 1856).

• A new Group.build_virtual_dataset() method acting as a context manager to assemble virtual datasets
(PR 1905).

• If the source and target of a virtual dataset mapping have different numbers of points, an error should now be
thrown when you make the mapping in the VirtualLayout, rather than later when writing this into the file.
This should make it easier to find the source of such errors.

Deprecations

• Linux wheels are now manylinux2010 rather than manylinux1

• The default_file_mode config option is deprecated, and setting it to values other than ‘r’ (for read-only mode)
is no longer allowed. Pass the mode when creating a File object instead of setting a global default.

6.1. “What’s new” documents 73

https://github.com/h5py/h5py/pull/1945
https://github.com/h5py/h5py/pull/1913
https://github.com/h5py/h5py/pull/1922
https://github.com/h5py/h5py/pull/1944
https://github.com/h5py/h5py/pull/1944
https://github.com/h5py/h5py/pull/1923
https://github.com/h5py/h5py/pull/1875
https://github.com/h5py/h5py/issues/1258
https://github.com/h5py/h5py/pull/1856
https://github.com/h5py/h5py/pull/1905

h5py Documentation, Release 3.10.0

Bug fixes

• Trying to open a file in append mode ('a') should now give clearer error messages when the file exists but can’t
be opened (PR 1902).

• Protect h5py.h5f.get_obj_ids() against garbage collection invalidating HDF5 IDs while it is retrieving them
(GH1852).

• Make file closing more robust, including when closing files while the interpreter is shutting down, by using
lower-level code to close HDF5 IDs of objects inside the file (GH1495).

6.1.9 What’s new in h5py 3.2

New features

• Added support to use the HDF5 ROS3 driver to access HDF5 files on S3 (PR 1755). This is not enabled in the
pre-built packages on PyPI. To use it, ensure HDF5 is built with read-only S3 support enabled, and then build
h5py from source using that HDF5 library.

Breaking changes & deprecations

• Python 3.7 is now the minimum supported version. It may still be possible to use this release with Python 3.6,
but it isn’t tested and wheels are not provided for Python 3.6.

• Setting the config option default_file_mode to values other than 'r' is deprecated. Pass the desired mode
when opening a File instead.

Exposing HDF5 functions

• H5Pset_fapl_ros3 & H5Pget_fapl_ros3 (where HDF5 is built with read-only S3 support).

Bug fixes

• OSError exceptions raised by h5py should now have a useful .errno attribute, where HDF5 provides this
information. Subclasses such as FileNotFoundError should also be raised where appropriate (PR 1815).

• Fix reading data with a datatype of variable-length arrays of fixed length strings (GH1817).

• Fix Dataset.read_direct() and Dataset.write_direct()when the source and destination have different
shapes (PR 1796).

• Fix selecting data using integer indices in Dataset.read_direct() and Dataset.write_direct() (PR
1818).

• Fix exception handling in Group.visititems() (GH1740).

• Issue a warning when File(..., swmr=True) is specified with any mode other than 'r', as the SWMR option
is ignored in these cases (PR 1812).

• Fix NumPy 1.20 deprecation warnings concerning the use of None as shape, and the deprecated aliases np.float,
np.int and np.bool (PR 1780).

74 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/pull/1902
https://api.h5py.org/h5f.html#h5py.h5f.get_obj_ids
https://github.com/h5py/h5py/issues/1852
https://github.com/h5py/h5py/issues/1495
https://github.com/h5py/h5py/pull/1755
https://github.com/h5py/h5py/pull/1815
https://github.com/h5py/h5py/issues/1817
https://github.com/h5py/h5py/pull/1796
https://github.com/h5py/h5py/pull/1818
https://github.com/h5py/h5py/pull/1818
https://github.com/h5py/h5py/issues/1740
https://github.com/h5py/h5py/pull/1812
https://github.com/h5py/h5py/pull/1780

h5py Documentation, Release 3.10.0

3.2.1 bug fix release

• Fix File.driver when the read-only S3 driver is available (PR 1844).

6.1.10 What’s new in h5py 3.1

Bug fixes

• Fix reading numeric data which is not in the native endianness, e.g. big-endian data on a little-endian system
(GH1729).

• Fix using bytes as names for Group.create_dataset() and Group.create_virtual_dataset()
(GH1732).

• Fix writing data as a list to a dataset with a sub-array data type (GH1735).

Building h5py

• Allow building against system lzf library by setting H5PY_SYSTEM_LZF=1. See Custom installation.

Development

• If pytest is missing pytest-mpi it will now fail with a clear error.

• Fix a test which was failing on big-endian systems.

6.1.11 What’s new in h5py 3.0

New features

• The interface for storing & reading strings has changed - see Strings in HDF5. The new rules are hopefully more
consistent, but may well require some changes in coding using h5py.

• Reading & writing data now releases the GIL, so another Python thread can continue while HDF5 accesses data.
Where HDF5 can call back into Python, such as for data conversion, h5py re-acquires the GIL. However, HDF5
has its own global lock, so this won’t speed up parallel data access using multithreading.

• Numpy datetime and timedelta arrays can now be stored and read as HDF5 opaque data (GH1339), though other
tools will not understand them. See Storing other types as opaque data for more information.

• New Dataset.iter_chunks() method, to iterate over chunks within the given selection.

• Compatibility with HDF5 1.12.

• Methods which accept a shape tuple, e.g. to create a dataset, now also allow an integer for a 1D shape (PR 1340).

• Casting data to a specified type on reading (Dataset.astype()) can now be done without a with statement,
like this:

data = dset.astype(np.int32)[:]

• A new Dataset.fields() method lets you read only selected fields from a dataset with a compound datatype.

• Reading data has less overhead, as selection has been implemented in Cython. Making many small reads from
the same dataset can be as much as 10 times faster, but there are many factors that can affect performance.

6.1. “What’s new” documents 75

https://github.com/h5py/h5py/pull/1844
https://github.com/h5py/h5py/issues/1729
https://github.com/h5py/h5py/issues/1732
https://github.com/h5py/h5py/issues/1735
https://pytest-mpi.readthedocs.io/en/latest/
https://github.com/h5py/h5py/issues/1339
https://github.com/h5py/h5py/pull/1340

h5py Documentation, Release 3.10.0

• A new NumPy-style Dataset.nbytes attribute to get the size of the dataset’s data in bytes. This differs from
the size attribute, which gives the number of elements.

• The external argument of Group.create_dataset(), which specifies any external storage for the dataset,
accepts more types (GH1260), as follows:

– The top-level container may be any iterable, not only a list.

– The names of external files may be not only str but also bytes or os.PathLike objects.

– The offsets and sizes may be NumPy integers as well as Python integers.

See also the deprecation related to the external argument.

• Support for setting file space strategy at file creation. Includes option to persist empty space tracking between
sessions. See File for details.

• More efficient writing when assiging a scalar to a chunked dataset, when the number of elements to write is no
more than the size of one chunk.

• Introduced support for the split file driver (PR 1468).

• Allow making virtual datasets which can grow as the source data is resized - see Virtual Datasets (VDS).

• New allow_unknown_filter option to Group.create_dataset(). This should only be used if you will compress
the data before writing it with the low-level write_direct_chunk() method.

• The low-level chunk query API provides information about dataset chunks in an HDF5 file: get_num_chunks(),
get_chunk_info() and get_chunk_info_by_coord().

• The low-level h5py.h5f.FileID.get_vfd_handle() method now works for any file driver that supports it,
not only the sec2 driver.

Breaking changes & deprecations

• h5py now requires Python 3.6 or above; it is no longer compatible with Python 2.7.

• The default mode for opening files is now ‘r’ (read-only). See Opening & creating files for other possible modes
if you need to write to a file.

• In previous versions, creating a dataset from a list of bytes objects would choose a fixed length string datatype to
fit the biggest item. It will now use a variable length string datatype. To store fixed length strings, use a suitable
dtype from h5py.string_dtype().

• Variable-length UTF-8 strings in datasets are now read as bytes objects instead of str by default, for consistency
with other kinds of strings. See Strings in HDF5 for more details.

• When making a virtual dataset, a dtype must be specified in VirtualLayout. There is no longer a default dtype,
as this was surprising in some cases.

• The external argument of Group.create_dataset() no longer accepts the following forms (GH1260):

– a list containing name, [offset, [size]];

– a list containing name1, name2, . . . ; and

– a list containing tuples such as (name,) and (name, offset) that lack the offset or size.

Furthermore, each name–offset–size triplet now must be a tuple rather than an arbitrary iterable. See also the
new feature related to the external argument.

• The MPI mode no longer supports mpi4py 1.x.

• The deprecated h5py.h5t.available_ftypes dictionary was removed.

76 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/issues/1260
https://github.com/h5py/h5py/pull/1468
https://api.h5py.org/h5d.html#h5py.h5d.DatasetID.write_direct_chunk
https://api.h5py.org/h5d.html#h5py.h5d.DatasetID.get_num_chunks
https://api.h5py.org/h5d.html#h5py.h5d.DatasetID.get_chunk_info
https://api.h5py.org/h5d.html#h5py.h5d.DatasetID.get_chunk_info_by_coord
https://api.h5py.org/h5f.html#h5py.h5f.FileID.get_vfd_handle
https://github.com/h5py/h5py/issues/1260

h5py Documentation, Release 3.10.0

• The deprecated Dataset.value property was removed. Use ds[()] to read all data from any dataset.

• The deprecated functions new_vlen, new_enum, get_vlen and get_enum have been removed. See Special
types for the newer APIs.

• Removed deprecated File.fid attribute. Use File.id instead.

• Remove the deprecated h5py.highlevel module. The high-level API is available directly in the h5py module.

• The third argument of h5py._hl.selections.select() is now an optional high-level Dataset object, rather
than a DatasetID. This is not really a public API - it has to be imported through the private _hl module - but
probably some people are using it anyway.

Exposing HDF5 functions

• H5Dget_num_chunks

• H5Dget_chunk_info

• H5Dget_chunk_info_by_coord

• H5Oget_info1

• H5Oget_info_by_name1

• H5Oget_info_by_idx1

• H5Ovisit1

• H5Ovisit_by_name1

• H5Pset_attr_phase_change

• H5Pset_fapl_split

• H5Pget_file_space_strategy

• H5Pset_file_space_strategy

• H5Sencode1

• H5Tget_create_plist

Bug fixes

• Fix segmentation fault when accessing vlen of strings (GH1336).

• Fix the storage of non-contiguous arrays, such as numpy slices, as HDF5 vlen data (GH1649).

• Fix pathologically slow reading/writing in certain conditions with integer indexing (GH492).

• Fix bug when Group.copy() source is a high-level object and destination is a Group (GH1005).

• Fix reading data for region references pointing to an empty selection.

• Unregister converter functions at exit, preventing segfaults on exit in some situations with threads (PR 1440).

• As HDF5 1.10.6 and later support UTF-8 paths on Windows, h5py built against HDF5 1.10.6 will use UTF-8 for
file names, allowing all filenames.

• Fixed h5py.h5d.DatasetID.get_storage_size() to report storage size of zero bytes without raising an
exception (GH1475).

• Attribute Managers (obj.attrs) can now work on HDF5 stored datatypes (GH1476).

6.1. “What’s new” documents 77

https://github.com/h5py/h5py/issues/1336
https://github.com/h5py/h5py/issues/1649
https://github.com/h5py/h5py/issues/492
https://github.com/h5py/h5py/issues/1005
https://github.com/h5py/h5py/pull/1440
https://api.h5py.org/h5d.html#h5py.h5d.DatasetID.get_storage_size
https://github.com/h5py/h5py/issues/1475
https://github.com/h5py/h5py/issues/1476

h5py Documentation, Release 3.10.0

• Remove broken inherited ds.dims.values() and ds.dims.items() methods. The dimensions interface be-
haves as a sequence, not a mapping (GH744).

• Fix creating attribute with Empty by converting its dtype to a numpy dtype object.

• Fix getting maxshape on empty/null datasets.

• The File.swmr_mode property is always available (GH1580).

• The File.mode property handles SWMR access modes in addition to plain RDONLY/RDWR modes

• Importing an MPI build of h5py no longer initialises MPI immediately, which will hopefully avoid various strange
behaviours.

• Avoid launching a subprocess by using platform.machine() at import time. This could trigger a warning in
MPI.

• Removed an equality comparison with an empty array, which will cause problems with future versions of numpy.

• Better error message if you try to use the mpio driver and h5py was not built with MPI support.

• Improved error messages when requesting chunked storage for an empty dataset.

• Data conversion functions should fail more gracefully if no memory is available.

• Fix some errors for internal functions that were raising “TypeError: expected bytes, str found” instead of the
correct error.

• Use relative path for virtual data sources if the source dataset is in the same file as the virtual dataset.

• Generic exception types used in tests’ assertRaise (exception types changed in new HDF5 version)

• Use dtype=object in tests with ragged arrays

Building h5py

• The setup.py configure command was removed. Configuration for the build can be specified with environ-
ment variables instead. See Custom installation for details.

• It is now possible to specify separate include and library directories for HDF5 via environment variables. See
Custom installation for more details.

• The pkg-config name to use when looking up the HDF5 library can now be configured, this can assist with
selecting the correct HDF5 library when using MPI. See Custom installation for more details.

• Using bare char* instead of array.array in h5d.read_direct_chunk since array.array is a private CPython
C-API interface

• Define NPY_NO_DEPRECATED_API to silence a warning.

• Make the lzf filter build with HDF5 1.10 (GH1219).

• If HDF5 is not loaded, an additional message is displayed to check HDF5 installation

• Rely much more on the C-interface provided by Cython to call Python and NumPy.

• Removed an old workaround which tried to run Cython in a subprocess if cythonize() didn’t work. This shouldn’t
be necessary for any recent version of setuptools.

• Migrate all Cython code base to Cython3 syntax

– The only noticeable change is in exception raising from cython which use bytes

– Massively use local imports everywhere as expected from Python3

– Explicitly mark several Cython functions as non-binding

78 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/issues/744
https://github.com/h5py/h5py/issues/1580
https://github.com/h5py/h5py/issues/1219

h5py Documentation, Release 3.10.0

Development

• Unregistering converter functions on exit (PR 1440) should allow profiling and code coverage tools to work on
Cython code.

6.1.12 What’s new in h5py 2.10

New features

• HDF5 8-bit bitfield data can now be read either as uint8 or booleans (GH821). Pytables stores booleans as this
type. For now, you must pick which type to use explicitly:

with dset.astype(numpy.uint8): # or numpy.bool
arr = dset[:]

• Numpy arrays of integers can now be used for fancy indexing, where previously a Python list was required
(GH963).

• Fancy indexing now allows an empty list or array (GH1174).

• IPython can now tab-complete names in h5py groups and attributes without any special user action (GH1228).
This simple completion only matches the first level of keys in a group, not subkeys. You can still call h5py.
enable_ipython_completion() for more complete results.

• The libver parameter for File now accepts 'v108' and 'v110' to specify compatibility with HDF5 1.8 or
1.10 (GH1155). See Version bounding for details.

• New functions and constants for getting and identifying special data types - string_dtype(), vlen_dtype(),
enum_dtype(), ref_dtype and regionref_dtype replace special_dtype(). For identifying string,
vlen and enum dtypes, check_string_dtype(), check_vlen_dtype() and check_enum_dtype() replace
check_dtype() (GH1132).

• A new method make_scale() to conveniently make a dataset into a dimension scale (GH830, GH1212).

• A new method AttributeManager.get_id() to get a low-level AttrID object referring to an attribute
(GH1278).

• Several examples were updated to run on Python 3 (GH1149).

Deprecations

• The default behaviour of h5py.File with no specified mode is deprecated (GH1143). It currently tries to create
a file or open it for read/write access, silently falling back to read-only depending on permissions. From h5py
3.0, the default will be read-only.

Ideally, code should pass an explicit mode each time a file is opened:

h5py.File("example.h5", "r")

The possible modes are described in Opening & creating files. If you want to suppress the deprecation warnings
from code you can’t modify, you can either:

– set h5.get_config().default_file_mode = 'r' (or another available mode)

– or set the environment variable H5PY_DEFAULT_READONLY to any non-empty string, to adopt the future
default.

• This is expected to be the last h5py release to support Python 2.7 and 3.4.

6.1. “What’s new” documents 79

https://github.com/h5py/h5py/pull/1440
https://github.com/h5py/h5py/issues/821
https://github.com/h5py/h5py/issues/963
https://github.com/h5py/h5py/issues/1174
https://github.com/h5py/h5py/issues/1228
https://github.com/h5py/h5py/issues/1155
https://github.com/h5py/h5py/issues/1132
https://github.com/h5py/h5py/issues/830
https://github.com/h5py/h5py/issues/1212
https://api.h5py.org/h5a.html#h5py.h5a.AttrID
https://github.com/h5py/h5py/issues/1278
https://github.com/h5py/h5py/issues/1149
https://github.com/h5py/h5py/issues/1143

h5py Documentation, Release 3.10.0

Exposing HDF5 functions

• H5Zunregister exposed as h5z.unregister_filter() (GH746, GH1224).

• The new module h5py.h5pl module exposes various H5PL functions to inspect and modify the search path for
plugins (GH1166, GH1256).

• H5Dread_chunk exposed as h5d.read_direct_chunk() (GH1190).

Bugfixes

• Fix crash with empty variable-length data (GH1248, GH1253).

• Fixed random selection of data type when reading 64-bit floats on Windows where Python uses random dictionary
order (GH1051, GH1134).

• Pickling h5py objects now fails explicitly. It previously failed on unpickling, and we can’t reliably serialise and
restore handles to HDF5 objects anyway (GH531, GH1194). If you need to use these objects in other processes,
you could explicitly serialise the filename and the name of the object inside the file. Or consider h5pickle, which
does the same implicitly.

• Creating a dataset with external storage can no longer mutate the external list parameter passed in (GH1205).
It also has improved error messages (GH1204).

• Certain deprecation warnings will now show the relevant line of code which uses the deprecated feature
(GH1146).

• Skipped a failing test for complex floating point numbers on 32-bit x86 systems (GH1235).

• Disabled the longdouble type on the ppc64le architecture, as it was causing segfaults with more commonly used
float types (GH1243).

• Documented that nested compound types are not currently supported (GH1236).

• Fixed attribute create method to be consistent with __setattr__ (GH1265).

Building h5py

• The version of HDF5 can now be automatically detected on Windows (GH1123).

• Fixed autodetecting the version from libhdf5 in default locations on Windows and Mac (GH1240).

• Fail to build if it can’t detect version from libhdf5, rather than assuming 1.8.4 as a default (GH1241).

• Building h5py from source on Unix platforms now requires either pkg-config or an explicitly specified path
to HDF5 (GH1231). Previously it had a hardcoded default path, but when this was wrong, the failures were
unnecessarily confusing.

• The Cython ‘language level’ is now explicitly set to 2, to prepare h5py for changing defaults in Cython (GH1171).

• Avoid using setup_requires when pip calls setup.py egg_info (GH1259).

80 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/issues/746
https://github.com/h5py/h5py/issues/1224
https://api.h5py.org/h5pl.html#module-h5py.h5pl
https://github.com/h5py/h5py/issues/1166
https://github.com/h5py/h5py/issues/1256
https://github.com/h5py/h5py/issues/1190
https://github.com/h5py/h5py/issues/1248
https://github.com/h5py/h5py/issues/1253
https://github.com/h5py/h5py/issues/1051
https://github.com/h5py/h5py/issues/1134
https://github.com/h5py/h5py/issues/531
https://github.com/h5py/h5py/issues/1194
https://github.com/Exteris/h5pickle/
https://github.com/h5py/h5py/issues/1205
https://github.com/h5py/h5py/issues/1204
https://github.com/h5py/h5py/issues/1146
https://github.com/h5py/h5py/issues/1235
https://github.com/h5py/h5py/issues/1243
https://github.com/h5py/h5py/issues/1236
https://github.com/h5py/h5py/issues/1265
https://github.com/h5py/h5py/issues/1123
https://github.com/h5py/h5py/issues/1240
https://github.com/h5py/h5py/issues/1241
https://github.com/h5py/h5py/issues/1231
https://github.com/h5py/h5py/issues/1171
https://github.com/h5py/h5py/issues/1259

h5py Documentation, Release 3.10.0

Development

• h5py’s tests are now run by pytest (GH1003), and coverage reports are automatically generated on Codecov.

6.1.13 What’s new in h5py 2.9

New features

• A convenient high-level API for creating virtual datasets, HDF5 objects which act as a view over one or more
real datasets (GH1060, GH1126). See Virtual Datasets (VDS) for details.

• File can now be constructed with a Python file-like object, making it easy to create an HDF5 file in memory
using io.BytesIO (GH1061, GH1105, GH1116). See Python file-like objects for details.

• File now accepts parameters to control the chunk cache (GH1008). See Chunk cache for details.

• New options to record the order of insertion for attributes and group entries. Iterating over these collections now
follows insertion order if it was recorded, or name order if not (GH1098).

• A new method Group.create_dataset_like() to create a new dataset with similar properties to an existing
one (GH1085).

• Datasets can now be created with storage backed by external non-HDF5 files (GH1000).

• Lists or tuples of unicode strings can now be stored as HDF5 attributes (GH1032).

• Inspecting the view returned by .keys() now shows the key names, for convenient interactive use (GH1049).

Exposing HDF5 functions

• H5LTopen_file_image as h5py.h5f.open_file_image() (GH1075).

• External dataset storage functions H5Pset_external, H5Pget_external and H5Pget_external_count as
methods on h5py.h5p.PropDCID (GH1000).

Bugfixes

• Fix reading/writing of float128 data (GH1114).

• Converting data to float16 when creating a dataset (GH1115).

Support for old Python

Support for Python 3.3 has been dropped.

Support for Python 2.6 has been dropped.

6.1. “What’s new” documents 81

https://github.com/h5py/h5py/issues/1003
https://codecov.io/gh/h5py/h5py
https://github.com/h5py/h5py/issues/1060
https://github.com/h5py/h5py/issues/1126
https://github.com/h5py/h5py/issues/1061
https://github.com/h5py/h5py/issues/1105
https://github.com/h5py/h5py/issues/1116
https://github.com/h5py/h5py/issues/1008
https://github.com/h5py/h5py/issues/1098
https://github.com/h5py/h5py/issues/1085
https://github.com/h5py/h5py/issues/1000
https://github.com/h5py/h5py/issues/1032
https://github.com/h5py/h5py/issues/1049
https://api.h5py.org/h5f.html#h5py.h5f.open_file_image
https://github.com/h5py/h5py/issues/1075
https://api.h5py.org/h5p.html#h5py.h5p.PropDCID
https://github.com/h5py/h5py/issues/1000
https://github.com/h5py/h5py/issues/1114
https://github.com/h5py/h5py/issues/1115

h5py Documentation, Release 3.10.0

6.1.14 What’s new in h5py 2.8

This is the first release of the h5py 2.8 series. Note that the 2.8 series is the last series of h5py to support Python 2.6
and 3.3. Users should look to moving to Python 2.7 or (preferably) Python 3.4 or higher, as earlier releases are now
outside of security support.

API changes

• Deprecation of h5t.available_ftypes. This is no longer used internally and will be removed in the future.
There is no replacement public API. See GH926 for how to add addition floating point types to h5py.

• Do not sort fields in compound types (GH970 by James Tocknell). This is to account for changes in numpy 1.14.

• Minimum required version of Cython is now 0.23.

Features

• Allow registration of new file drivers (GH956 by Joe Jevnik).

• Add option to track object creation order to Group.create_group (GH968 by Chen Yufei)

Bug fixes

• Support slices with stop < start as empty slices (GH924 by Joe Jevnik)

• Avoid crashing the IPython auto-completer when missing key (GH885, GH958 by James Tocknell). The auto-
completer currently only works on older versions of IPython, see GH1022 for what’s needed to support newer
versions of IPython/jupyter (PRs welcome!)

• Set libver default to ‘earliest’ (a.k.a LIBVER_EARLIEST) as previously documented (GH933, GH936 by James
Tocknell)

• Fix conflict between fletcher32 and szip compression when using the float64 dtype (GH953, GH989, by Paul
Müller).

• Update floating point type handling as flagged by numpy deprecation warning (GH985, by Eric Larson)

• Allow ExternalLinks to use non-ASCII hdf5 paths (GH333, GH952 by James Tocknell)

• Prefer custom HDF5 over pkg-config/fallback paths when building/installing (GH946, GH947 by Lars Viklund)

• Fix compatibility with Python 3 in document generation (GH921 by Ghislain Antony Vaillant)

• Fix spelling and grammar in documentation (GH931 by Michael V. DePalatis, GH950 by Christian Sachs,
GH1015 by Mikhail)

• Add minor changes to documentation in order to improve clarity and warn about potential problems (GH528,
GH783, GH829, GH849, GH911, GH959, by James Tocknell)

• Add license field to setup.py metadata (GH999 by Nils Werner).

• Use system encoding for errors, not utf-8 (GH1016, GH1025 by James Tocknell)

• Add write_direct to the documentation (GH1028 by Sajid Ali and Thomas A Caswell)

82 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/issues/926
https://github.com/h5py/h5py/issues/970
https://github.com/h5py/h5py/issues/956
https://github.com/h5py/h5py/issues/968
https://github.com/h5py/h5py/issues/924
https://github.com/h5py/h5py/issues/885
https://github.com/h5py/h5py/issues/958
https://github.com/h5py/h5py/issues/1022
https://github.com/h5py/h5py/issues/933
https://github.com/h5py/h5py/issues/936
https://github.com/h5py/h5py/issues/953
https://github.com/h5py/h5py/issues/989
https://github.com/h5py/h5py/issues/985
https://github.com/h5py/h5py/issues/333
https://github.com/h5py/h5py/issues/952
https://github.com/h5py/h5py/issues/946
https://github.com/h5py/h5py/issues/947
https://github.com/h5py/h5py/issues/921
https://github.com/h5py/h5py/issues/931
https://github.com/h5py/h5py/issues/950
https://github.com/h5py/h5py/issues/1015
https://github.com/h5py/h5py/issues/528
https://github.com/h5py/h5py/issues/783
https://github.com/h5py/h5py/issues/829
https://github.com/h5py/h5py/issues/849
https://github.com/h5py/h5py/issues/911
https://github.com/h5py/h5py/issues/959
https://github.com/h5py/h5py/issues/999
https://github.com/h5py/h5py/issues/1016
https://github.com/h5py/h5py/issues/1025
https://github.com/h5py/h5py/issues/1028

h5py Documentation, Release 3.10.0

Wheels HDF5 Version

• Wheels uploaded to PyPI will now be built against the HDF5 1.10 series as opposed to the 1.8 series (h5py 2.8
is built against HDF5 1.10.2).

CI/Testing improvements and fixes

There were a number of improvements to testing and CI systems of h5py, including running the CI against multiple
versions of HDF5, improving reliability and speed of the CIs, and simplifying the tox file. See GH857, GH894, GH922,
GH954 and GH962 by Thomas A Caswell and James Tocknell for more details.

Other changes

• Emphasise reading from HDF5 files rather than writing to files in Quickguide (GH609, GH610 by Yu Feng).
Note these changes were in the 2.5 branch, but never got merged into master. The h5py 2.8 release now actually
includes these changes.

• Use lazy-loading of run_tests to avoid strong dependency on unittest2 (GH1013, GH1014 by Thomas VINCENT)

• Correctly handle with multiple float types of the same size (GH926 by James Tocknell)

Acknowledgements and Thanks

The h5py developers thank Nathan Goldbaum, Matthew Brett, and Christoph Gohlke for building the wheels that appear
on PyPI.

6.1.15 What’s new in h5py 2.7.1

2.7.1 is the first bug-fix release in the 2.7.x series.

Bug fixes

• GH903 Fixed critical issue with cyclic gc which resulted in segfaults

• GH904 Avoid unaligned access fixing h5py on sparc64

• GH883 Fixed compilation issues for some library locations

• GH868 Fix deadlock between phil and the import lock in py2

• GH841 Improve windows handling if filenames

• GH874 Allow close to be called on file multiple times

• GH867, GH872 Warn on loaded vs complied hdf5 version issues

• GH902 Fix overflow computing size of dataset on windows

• GH912 Do not mangle capitalization of filenames in error messages

• GH842 Fix longdouble on ppc64le

• GH862, GH916 Fix compounds structs with variable-size members

6.1. “What’s new” documents 83

https://github.com/h5py/h5py/issues/857
https://github.com/h5py/h5py/issues/894
https://github.com/h5py/h5py/issues/922
https://github.com/h5py/h5py/issues/954
https://github.com/h5py/h5py/issues/962
https://github.com/h5py/h5py/issues/609
https://github.com/h5py/h5py/issues/610
https://github.com/h5py/h5py/issues/1013
https://github.com/h5py/h5py/issues/1014
https://github.com/h5py/h5py/issues/926
https://github.com/h5py/h5py/issues/903
https://github.com/h5py/h5py/issues/904
https://github.com/h5py/h5py/issues/883
https://github.com/h5py/h5py/issues/868
https://github.com/h5py/h5py/issues/841
https://github.com/h5py/h5py/issues/874
https://github.com/h5py/h5py/issues/867
https://github.com/h5py/h5py/issues/872
https://github.com/h5py/h5py/issues/902
https://github.com/h5py/h5py/issues/912
https://github.com/h5py/h5py/issues/842
https://github.com/h5py/h5py/issues/862
https://github.com/h5py/h5py/issues/916

h5py Documentation, Release 3.10.0

Fix h5py segfaulting on some Python 3 versions

Through an intersection of Python Issue 30484 and GH888, it was possible for the Python Garbage Collector to ac-
tivate when closing h5py objects, which due to how dictionaries were iterated over in Python could cause a segfault.
GH903 fixes the Garbage Collector activating whilst closing, whilst Python Issue 30484 had been fixed upstream (and
backported to Python 3.3 onwards).

Avoid unaligned memory access in conversion functions

Some architectures (e.g. SPARC64) do not allow unaligned memory access, which can come up when copying packed
structs. GH904 (by James Clarke) uses memcpy to avoid said unaligned memory access.

6.1.16 What’s new in h5py 2.7

Python 3.2 is no longer supported

h5py 2.7 drops Python 3.2 support, and testing is not longer performed on Python 3.2. The latest versions of pip,
virtualenv, setuptools and numpy do not support Python 3.2, and dropping 3.2 allows both u and b prefixes to be
used for strings. A clean up of some of the legacy code was done in PR 675 by Andrew Collette.

Additionally, support for Python 2.6 is soon to be dropped for pip (See https://github.com/pypa/pip/issues/3955) and
setuptools (See https://github.com/pypa/setuptools/issues/878), and numpy has dropped Python 2.6 also in the latest
release. While h5py has not dropped Python 2.6 this release, users are strongly encouraged to move to Python 2.7 where
possible.

Improved testing support

There has been a major increase in the number of configurations h5py is automatically tested in, with Windows CI
support added via Appveyor (PR 795, PR 798, PR 799 and PR 801 by James Tocknell) and testing of minimum re-
quirements to ensure we still satisfy them (PR 703 by James Tocknell). Additionally, tox was used to ensure that we
don’t run tests on Python versions which our dependencies have dropped or do not support (PR 662, PR 700 and PR
733). Thanks to to the Appveyor support, unicode tests were made more robust (PR 788, PR 800 and PR 804 by James
Tocknell). Finally, other tests were improved or added where needed (PR 724 by Matthew Brett, PR 789, PR 794 and
PR 802 by James Tocknell).

Improved python compatibility

The ipython/jupyter completion support now has Python 3 support (PR 715 by Joseph Kleinhenz). h5py now
supports pathlib filenames (PR 716 by James Tocknell).

Documentation improvements

An update to the installation instructions and some whitespace cleanup was done in PR 808 by Thomas A Caswell, and
mistake in the quickstart was fixed by Joydeep Bhattacharjee in PR 708.

84 Chapter 6. Meta-info about the h5py project

https://bugs.python.org/issue30484
https://github.com/h5py/h5py/issues/888
https://github.com/h5py/h5py/issues/903
https://bugs.python.org/issue30484
https://github.com/h5py/h5py/issues/904
https://github.com/h5py/h5py/pull/675
https://github.com/pypa/pip/issues/3955
https://github.com/pypa/setuptools/issues/878
https://github.com/h5py/h5py/pull/795
https://github.com/h5py/h5py/pull/798
https://github.com/h5py/h5py/pull/799
https://github.com/h5py/h5py/pull/801
https://github.com/h5py/h5py/pull/703
https://github.com/h5py/h5py/pull/662
https://github.com/h5py/h5py/pull/700
https://github.com/h5py/h5py/pull/733
https://github.com/h5py/h5py/pull/733
https://github.com/h5py/h5py/pull/788
https://github.com/h5py/h5py/pull/800
https://github.com/h5py/h5py/pull/804
https://github.com/h5py/h5py/pull/724
https://github.com/h5py/h5py/pull/789
https://github.com/h5py/h5py/pull/794
https://github.com/h5py/h5py/pull/802
https://github.com/h5py/h5py/pull/715
https://github.com/h5py/h5py/pull/716
https://github.com/h5py/h5py/pull/808
https://github.com/h5py/h5py/pull/708

h5py Documentation, Release 3.10.0

setup.py improvements

Support for detecting the version of HDF5 via pkgconfig was added by Axel Huebl in PR 734, and support for
specifying the path to MPI-supported HDF5 was added by Axel Huebl in PR 721. h5py's classifiers were updated to
include supported python version and interpreters in PR 811 by James Tocknell.

Support for additional HDF5 features added

Low-level support for HDF5 Direct Chunk Write was added in PR 691 by Simon Gregor Ebner. Minimal support for
HDF5 File Image Operations was added by Andrea Bedini in PR 680. Ideas and opinions for further support for both
HDF5 Direct Chunk Write and HDF5 File Image Operations are welcome. High-level support for reading and writing
null dataspaces was added in PR 664 by James Tocknell.

Improvements to type system

Reading and writing of compound datatypes has improved, with support for different orderings and alignments (PR 701
by Jonah Bernhard, PR 702 by Caleb Morse PR 738 by @smutch, PR 765 by Nathan Goldbaum and PR 793 by James
Tocknell). Support for reading extended precision and non-standard floating point numbers has also been added (PR
749, PR 812 by Thomas A Caswell, PR 787 by James Tocknell and PR 781 by Martin Raspaud). Finally, compatibility
improvements to Cython annotations of HDF5 types were added in PR 692 and PR 693 by Aleksandar Jelenak.

Other changes

• Fix deprecation of - for numpy boolean arrays (PR 683 by James Tocknell)

• Check for duplicates in fancy index validation (PR 739 by Sam Toyer)

• Avoid potential race condition (PR 754 by James Tocknell)

• Fix inconsistency when slicing with numpy.array of shape (1,) (PR 772 by Artsiom)

• Use size_t to store Python object id (PR 773 by Christoph Gohlke)

• Avoid errors when the Python GC runs during nonlocal_close() (PR 776 by Antoine Pitrou)

• Move from six.PY3 to six.PY2 (PR 686 by James Tocknell)

Acknowledgements

6.1.17 What’s new in h5py 2.6

Support for HDF5 Virtual Dataset API

Initial support for the HDF5 Virtual Dataset API, which was introduced in HDF5 1.10, was added to the low-level API.
Ideas and input for how this should work as part of the high-level interface are welcome.

This work was added in PR 663 by Aleksandar Jelenak.

6.1. “What’s new” documents 85

https://github.com/h5py/h5py/pull/734
https://github.com/h5py/h5py/pull/721
https://github.com/h5py/h5py/pull/811
https://support.hdfgroup.org/HDF5/doc/Advanced/DirectChunkWrite/
https://github.com/h5py/h5py/pull/691
https://support.hdfgroup.org/HDF5/doc/Advanced/FileImageOperations/HDF5FileImageOperations.pdf
https://github.com/h5py/h5py/pull/680
https://support.hdfgroup.org/HDF5/doc/Advanced/DirectChunkWrite/
https://support.hdfgroup.org/HDF5/doc/Advanced/FileImageOperations/HDF5FileImageOperations.pdf
https://github.com/h5py/h5py/pull/664
https://github.com/h5py/h5py/pull/701
https://github.com/h5py/h5py/pull/702
https://github.com/h5py/h5py/pull/738
https://github.com/h5py/h5py/pull/765
https://github.com/h5py/h5py/pull/793
https://github.com/h5py/h5py/pull/749
https://github.com/h5py/h5py/pull/749
https://github.com/h5py/h5py/pull/812
https://github.com/h5py/h5py/pull/787
https://github.com/h5py/h5py/pull/781
https://github.com/h5py/h5py/pull/692
https://github.com/h5py/h5py/pull/693
https://github.com/h5py/h5py/pull/683
https://github.com/h5py/h5py/pull/739
https://github.com/h5py/h5py/pull/754
https://github.com/h5py/h5py/pull/772
https://github.com/h5py/h5py/pull/773
https://github.com/h5py/h5py/pull/776
https://github.com/h5py/h5py/pull/686
https://github.com/h5py/h5py/pull/663

h5py Documentation, Release 3.10.0

Add MPI Collective I/O Support

Support for using MPI Collective I/O in both low-level and high-level code has been added. See the collective_io.py
example for a simple demonstration of how to use MPI Collective I/O with the high level API.

This work was added in PR 648 by Jialin Liu.

Numerous build/testing/CI improvements

There were a number of improvements to the setup.py file, which should mean that pip install h5py should work in
most places. Work was also done to clean up the current testing system, using tox is the recommended way of testing
h5py across different Python versions. See PR 576 by Jakob Lombacher, PR 640 by Lawrence Mitchell, and PR 650,
PR 651 and PR 658 by James Tocknell.

Cleanup of codebase based on pylint

There was a large cleanup of pylint-identified problems by Andrew Collette (PR 578, PR 579).

Fixes to low-level API

Fixes to the typing of functions were added in PR 597 by Ulrik Kofoed Pedersen, PR 589 by Peter Chang, and PR 625
by Spaghetti Sort. A fix for variable-length arrays was added in PR 621 by Sam Mason. Fixes to compound types were
added in PR 639 by @nevion and PR 606 by Yu Feng. Finally, a fix to type conversion was added in PR 614 by Andrew
Collette.

Documentation improvements

• Updates to FAQ by Dan Guest (PR 608) and Peter Hill (PR 607).

• Updates MPI-related documentation by Jens Timmerman (PR 604) and Matthias König (PR 572).

• Fixes to documentation building by Ghislain Antony Vaillant (PR 562, PR 561).

• Update PyTables link (PR 574 by Dominik Kriegner)

• Add File opening modes to docstring (PR 563 by Antony Lee)

Other changes

• Add Dataset.ndim (PR 649, PR 660 by @jakirkham, PR 661 by James Tocknell)

• Fix import errors in IPython completer (PR 605 by Niru Maheswaranathan)

• Turn off error printing in new threads (PR 583 by Andrew Collette)

• Use item value in KeyError instead of error message (PR 642 by Matthias Geier)

86 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/pull/648
https://github.com/h5py/h5py/pull/576
https://github.com/h5py/h5py/pull/640
https://github.com/h5py/h5py/pull/650
https://github.com/h5py/h5py/pull/651
https://github.com/h5py/h5py/pull/658
https://github.com/h5py/h5py/pull/578
https://github.com/h5py/h5py/pull/579
https://github.com/h5py/h5py/pull/597
https://github.com/h5py/h5py/pull/589
https://github.com/h5py/h5py/pull/625
https://github.com/h5py/h5py/pull/621
https://github.com/h5py/h5py/pull/639
https://github.com/h5py/h5py/pull/606
https://github.com/h5py/h5py/pull/614
https://github.com/h5py/h5py/pull/608
https://github.com/h5py/h5py/pull/607
https://github.com/h5py/h5py/pull/604
https://github.com/h5py/h5py/pull/572
https://github.com/h5py/h5py/pull/562
https://github.com/h5py/h5py/pull/561
https://github.com/h5py/h5py/pull/574
https://github.com/h5py/h5py/pull/563
https://github.com/h5py/h5py/pull/649
https://github.com/h5py/h5py/pull/660
https://github.com/h5py/h5py/pull/661
https://github.com/h5py/h5py/pull/605
https://github.com/h5py/h5py/pull/583
https://github.com/h5py/h5py/pull/642

h5py Documentation, Release 3.10.0

Acknowledgements

6.1.18 What’s new in h5py 2.5

Experimental support for Single Writer Multiple Reader (SWMR)

This release introduces experimental support for the highly-anticipated “Single Writer Multiple Reader” (SWMR)
feature in the upcoming HDF5 1.10 release. SWMR allows sharing of a single HDF5 file between multiple processes
without the complexity of MPI or multiprocessing-based solutions.

This is an experimental feature that should NOT be used in production code. We are interested in getting feedback
from the broader community with respect to performance and the API design.

For more details, check out the h5py user guide: https://docs.h5py.org/en/latest/swmr.html

SWMR support was contributed by Ulrik Pedersen (PR 551).

Other changes

• Use system Cython as a fallback if cythonize() fails (PR 541 by Ulrik Pedersen).

• Use pkg-config for building/linking against hdf5 (PR 505 by James Tocknell).

• Disable building Cython on Travis (PR 513 by Andrew Collette).

• Improvements to release tarball (PR 555, PR 560 by Ghislain Antony Vaillant).

• h5py now has one codebase for both Python 2 and 3; 2to3 removed from setup.py (PR 508 by James Tocknell).

• Add python 3.4 to tox (PR 507 by James Tocknell).

• Warn when importing from inside install dir (PR 558 by Andrew Collette).

• Tweak installation docs with reference to Anaconda and other Python package managers (PR 546 by Andrew
Collette).

• Fix incompatible function pointer types (PR 526, PR 524 by Peter H. Li).

• Add explicit vlen is not None check to work around https://github.com/numpy/numpy/issues/2190 (#538 by Will
Parkin).

• Group and AttributeManager classes now inherit from the appropriate ABCs (PR 527 by James Tocknell).

• Don’t strip metadata from special dtypes on read (PR 512 by Antony Lee).

• Add ‘x’ mode as an alias for ‘w-’ (PR 510 by Antony Lee).

• Support dynamical loading of LZF filter plugin (PR 506 by Peter Colberg).

• Fix accessing attributes with array type (PR 501 by Andrew Collette).

• Don’t leak types in enum converter (PR 503 by Andrew Collette).

• Cython warning cleanups related to “const”

6.1. “What’s new” documents 87

https://docs.h5py.org/en/latest/swmr.html
https://github.com/h5py/h5py/pull/551
https://github.com/h5py/h5py/pull/541
https://github.com/h5py/h5py/pull/505
https://github.com/h5py/h5py/pull/513
https://github.com/h5py/h5py/pull/555
https://github.com/h5py/h5py/pull/560
https://github.com/h5py/h5py/pull/508
https://github.com/h5py/h5py/pull/507
https://github.com/h5py/h5py/pull/558
https://github.com/h5py/h5py/pull/546
https://github.com/h5py/h5py/pull/526
https://github.com/h5py/h5py/pull/524
https://github.com/numpy/numpy/issues/2190
https://github.com/h5py/h5py/pull/527
https://github.com/h5py/h5py/pull/512
https://github.com/h5py/h5py/pull/510
https://github.com/h5py/h5py/pull/506
https://github.com/h5py/h5py/pull/501
https://github.com/h5py/h5py/pull/503

h5py Documentation, Release 3.10.0

Acknowledgements

This release incorporates changes from, among others:

• Ulrik Pedersen

• James Tocknell

• Will Parkin

• Antony Lee

• Peter H. Li

• Peter Colberg

• Ghislain Antony Vaillant

6.1.19 What’s new in h5py 2.4

Build system changes

The setup.py-based build system has been reworked to be more maintainable, and to fix certain long-standing bugs.
As a consequence, the options to setup.py have changed; a new top-level “configure” command handles options like
--hdf5=/path/to/hdf5 and --mpi. Setup.py now works correctly under Python 3 when these options are used.

Cython (0.17+) is now required when building from source on all platforms; the .c files are no longer shipped in the
UNIX release. The minimum NumPy version is now 1.6.1.

Files will now auto-close

Files are now automatically closed when all objects within them are unreachable. Previously, if File.close() was not
explicitly called, files would remain open and “leaks” were possible if the File object was lost.

Thread safety improvements

Access to all APIs, high- and low-level, are now protected by a global lock. The entire API is now believed to be
thread-safe. Feedback and real-world testing is welcome.

External link improvements

External links now work if the target file is already open. Previously this was not possible because of a mismatch in
the file close strengths.

Thanks to

Many people, but especially:

• Matthieu Brucher

• Laurence Hole

• John Tyree

• Pierre de Buyl

• Matthew Brett

88 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 3.10.0

6.1.20 What’s new in h5py 2.3

Support for arbitrary vlen data

Variable-length data is no longer restricted to strings. You can use this feature to produce “ragged” arrays, whose
members are 1D arrays of variable length.

The implementation of special types was changed to use the NumPy dtype “metadata” field. This change should be
transparent, as access to special types is handled through h5py.special_dtype and h5py.check_dtype.

Improved exception messages

H5py has historically suffered from low-detail exception messages generated automatically by HDF5. While the ex-
ception types in 2.3 remain identical to those in 2.2, the messages have been substantially improved to provide more
information as to the source of the error.

Examples:

ValueError: Unable to set extend dataset (Dimension cannot exceed the existing maximal␣
→˓size (new: 100 max: 1))

IOError: Unable to open file (Unable to open file: name = 'x3', errno = 2, error message␣
→˓= 'no such file or directory', flags = 0, o_flags = 0)

KeyError: "Unable to open object (Object 'foo' doesn't exist)"

Improved setuptools support

setup.py now uses setup_requires to make installation via pip friendlier.

Multiple low-level additions

Improved support for opening datasets via the low-level interface, by adding H5Dopen2 and many new property-list
functions.

Improved support for MPI features

Added support for retrieving the MPI communicator and info objects from an open file. Added boilerplate code to
allow compiling cleanly against newer versions of mpi4py.

Readonly files can now be opened in default mode

When opening a read-only file with no mode flags, now defaults to opening the file on RO mode rather than raising an
exception.

6.1. “What’s new” documents 89

h5py Documentation, Release 3.10.0

Single-step build for HDF5 on Windows

Building h5py on windows has typically been hamstrung by the need to build a compatible version of HDF5 first. A
new Paver-based system located in the “windows” distribution directory allows single-step compilation of HDF5 with
settings that are known to work with h5py.

For more, see:

https://github.com/h5py/h5py/tree/master/windows

Thanks to

• Martin Teichmann

• Florian Rathgerber

• Pierre de Buyl

• Thomas Caswell

• Andy Salnikov

• Darren Dale

• Robert David Grant

• Toon Verstraelen

• Many others who contributed bug reports

6.1.21 What’s new in h5py 2.2

Support for Parallel HDF5

On UNIX platforms, you can now take advantage of MPI and Parallel HDF5. Cython, mpi4py and an MPI-enabled
build of HDF5 are required.. See Parallel HDF5 in the documentation for details.

Support for Python 3.3

Python 3.3 is now officially supported.

Mini float support (issue #141)

Two-byte floats (NumPy float16) are supported.

HDF5 scale/offset filter

The Scale/Offset filter added in HDF5 1.8 is now available.

90 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/tree/master/windows

h5py Documentation, Release 3.10.0

Field indexing is now allowed when writing to a dataset (issue #42)

H5py has long supported reading only certain fields from a dataset:

>>> dset = f.create_dataset('x', (100,), dtype=np.dtype([('a', 'f'), ('b', 'i')]))
>>> out = dset['a', 0:100:10]
>>> out.dtype
dtype('float32')

Now, field names are also allowed when writing to a dataset:

>>> dset['a', 20:50] = 1.0

Region references preserve shape (issue #295)

Previously, region references always resulted in a 1D selection, even when 2D slicing was used:

>>> dset = f.create_dataset('x', (10, 10))
>>> ref = dset.regionref[0:5,0:5]
>>> out = dset[ref]
>>> out.shape
(25,)

Shape is now preserved:

>>> out = dset[ref]
>>> out.shape
(5, 5)

Additionally, the shape of both the target dataspace and the selection shape can be determined via new methods on the
regionref proxy (now available on both datasets and groups):

>>> f.regionref.shape(ref)
(10, 10)
>>> f.regionref.selection(ref)
(5, 5)

Committed types can be linked to datasets and attributes

HDF5 supports “shared” named types stored in the file:

>>> f['name'] = np.dtype("int64")

You can now use these types when creating a new dataset or attribute, and HDF5 will “link” the dataset type to the
named type:

>>> dset = f.create_dataset('int dataset', (10,), dtype=f['name'])
>>> f.attrs.create('int scalar attribute', shape=(), dtype=f['name'])

6.1. “What’s new” documents 91

h5py Documentation, Release 3.10.0

move method on Group objects

It’s no longer necessary to move objects in a file by manually re-linking them:

>>> f.create_group('a')
>>> f['b'] = f['a']
>>> del f['a']

The method Group.move allows this to be performed in one step:

>>> f.move('a', 'b')

Both the source and destination must be in the same file.

6.1.22 What’s new in h5py 2.1

Dimension scales

H5py now supports the Dimension Scales feature of HDF5! Thanks to Darren Dale for implementing this. You can
find more information on using scales in the Dimension Scales section of the docs.

Unicode strings allowed in attributes

Group, dataset and attribute names in h5py 2.X can all be given as unicode. Now, you can also store (scalar) unicode
data in attribute values as well:

>>> myfile.attrs['x'] = u"I'm a Unicode string!"

Storing Unicode strings in datasets or as members of compound types is not yet implemented.

Dataset size property

Dataset objects now expose a .size property which provides the total number of elements in the dataspace.

Dataset.value property is now deprecated.

The property Dataset.value, which dates back to h5py 1.0, is deprecated and will be removed in a later release. This
property dumps the entire dataset into a NumPy array. Code using .value should be updated to use NumPy indexing,
using mydataset[...] or mydataset[()] as appropriate.

Bug fixes

• Object and region references were sometimes incorrectly wrapped wrapped in a numpy.object_ instance (issue
202)

• H5py now ignores old versions of Cython (<0.13) when building (issue 221)

• Link access property lists weren’t being properly tracked in the high level interface (issue 212)

• Race condition fixed in identifier tracking which led to Python crashes (issue 151)

• Highlevel objects will now complain if you try to bind them to the wrong HDF5 object types (issue 191)

92 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 3.10.0

• Unit tests can now be run after installation (issue 201)

6.1.23 What’s new in h5py 2.0

HDF5 for Python (h5py) 2.0 represents the first major refactoring of the h5py codebase since the project’s launch in
2008. Many of the most important changes are behind the scenes, and include changes to the way h5py interacts with
the HDF5 library and Python. These changes have substantially improved h5py’s stability, and make it possible to use
more modern versions of HDF5 without compatibility concerns. It is now also possible to use h5py with Python 3.

Enhancements unlikely to affect compatibility

• HDF5 1.8.3 through 1.8.7 now work correctly and are officially supported.

• Python 3.2 is officially supported by h5py! Thanks especially to Darren Dale for getting this working.

• Fill values can now be specified when creating a dataset. The fill time is H5D_FILL_TIME_IFSET for contiguous
datasets, and H5D_FILL_TIME_ALLOC for chunked datasets.

• On Python 3, dictionary-style methods like Group.keys() and Group.values() return view-like objects instead of
lists.

• Object and region references now work correctly in compound types.

• Zero-length dimensions for extendable axes are now allowed.

• H5py no longer attempts to auto-import ipython on startup.

• File format bounds can now be given when opening a high-level File object (keyword “libver”).

Changes which may break existing code

Supported HDF5/Python versions

• HDF5 1.6.X is no longer supported on any platform; following the release of 1.6.10 some time ago, this branch
is no longer maintained by The HDF Group.

• Python 2.6 or later is now required to run h5py. This is a consequence of the numerous changes made to h5py
for Python 3 compatibility.

• On Python 2.6, unittest2 is now required to run the test suite.

Group, Dataset and Datatype constructors have changed

In h5py 2.0, it is no longer possible to create new groups, datasets or named datatypes by passing names and settings
to the constructors directly. Instead, you should use the standard Group methods create_group and create_dataset.

The File constructor remains unchanged and is still the correct mechanism for opening and creating files.

Code which manually creates Group, Dataset or Datatype objects will have to be modified to use create_group or
create_dataset. File-resident datatypes can be created by assigning a NumPy dtype to a name (e.g. mygroup[“name”]
= numpy.dtype(‘S10’)).

6.1. “What’s new” documents 93

h5py Documentation, Release 3.10.0

Unicode is now used for object names

Older versions of h5py used byte strings to represent names in the file. Starting with version 2.0, you may use either
byte or unicode strings to create objects, but object names (obj.name, etc) will generally be returned as Unicode.

Code which may be affected:

• Anything which uses “isinstance” or explicit type checks on names, expecting “str” objects. Such checks should
be removed, or changed to compare to “basestring” instead.

• In Python 2.X, other parts of your application may complain if they are handed Unicode data which can’t be
encoded down to ascii. This is a general problem in Python 2.

File objects must be manually closed

With h5py 1.3, when File objects (or low-level FileID) objects went out of scope, the corresponding HDF5 file was
closed. This led to surprising behavior, especially when files were opened with the H5F_CLOSE_STRONG flag;
“losing” the original File object meant that all open groups and datasets suddenly became invalid.

Beginning with h5py 2.0, files must be manually closed, by calling the “close” method or by using the file object as a
context manager. If you forget to close a file, the HDF5 library will try to close it for you when the application exits.

Please note that opening the same file multiple times (i.e. without closing it first) continues to result in undefined
behavior.

Changes to scalar slicing code

When a scalar dataset was accessed with the syntax dataset[()], h5py incorrectly returned an ndarray. H5py now
correctly returns an array scalar. Using dataset[...] on a scalar dataset still returns an ndarray.

Array scalars now always returned when indexing a dataset

When using datasets of compound type, retrieving a single element incorrectly returned a tuple of values, rather than an
instance of numpy.void_ with the proper fields populated. Among other things, this meant you couldn’t do things like
dataset[index][field]. H5py now always returns an array scalar, except in the case of object dtypes (references,
vlen strings).

Reading object-like data strips special type information

In the past, reading multiple data points from dataset with vlen or reference type returned a Numpy array with a “special
dtype” (such as those created by h5py.special_dtype()). In h5py 2.0, all such arrays now have a generic Numpy
object dtype (numpy.dtype('O')). To get a copy of the dataset’s dtype, always use the dataset’s dtype property directly
(mydataset.dtype).

94 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 3.10.0

The selections module has been removed

Only numpy-style slicing arguments remain supported in the high level interface. Existing code which uses the selec-
tions module should be refactored to use numpy slicing (and numpy.s_ as appropriate), or the standard C-style HDF5
dataspace machinery.

The H5Error exception class has been removed (along with h5py.h5e)

All h5py exceptions are now native Python exceptions, no longer inheriting from H5Error. RuntimeError is raised if
h5py can’t figure out what exception is appropriate. . . every instance of this behavior is considered a bug. If you see
h5py raising RuntimeError please report it so we can add the correct mapping!

The old errors module (h5py.h5e) has also been removed. There is no public error-management API.

File .mode property is now either ‘r’ or ‘r+

Files can be opened using the same mode arguments as before, but now the property File.mode will always return ‘r’
(read-only) or ‘r+’ (read-write).

Long-deprecated dict methods have been removed

Certain ancient aliases for Group/AttributeManager methods (e.g. listnames) have been removed. Please use the
standard Python dict interface (Python 2 or Python 3 as appropriate) to interact with these objects.

Known issues

• Thread support has been improved in h5py 2.0. However, we still recommend that for your own sanity you use
locking to serialize access to files.

• There are reports of crashes related to storing object and region references. If this happens to you, please post
on the mailing list or contact the h5py author directly.

6.2 Bug Reports & Contributions

Contributions and bug reports are welcome from anyone! Some of the best features in h5py, including thread support,
dimension scales, and the scale-offset filter, came from user code contributions.

Since we use GitHub, the workflow will be familiar to many people. If you have questions about the process or about
the details of implementing your feature, feel free to ask on Github itself, or on the h5py section of the HDF5 forum:

https://forum.hdfgroup.org/c/hdf-tools/h5py

Posting on this forum requires registering for a free account with HDF group.

Anyone can post to this list. Your first message will be approved by a moderator, so don’t worry if there’s a brief delay.

This guide is divided into three sections. The first describes how to file a bug report.

The second describes the mechanics of how to submit a contribution to the h5py project; for example, how to create
a pull request, which branch to base your work on, etc. We assume you’re are familiar with Git, the version control
system used by h5py. If not, here’s a great place to start.

6.2. Bug Reports & Contributions 95

https://forum.hdfgroup.org/c/hdf-tools/h5py
https://git-scm.com/book

h5py Documentation, Release 3.10.0

Finally, we describe the various subsystems inside h5py, and give technical guidance as to how to implement your
changes.

6.2.1 How to File a Bug Report

Bug reports are always welcome! The issue tracker is at:

https://github.com/h5py/h5py/issues

If you’re unsure whether you’ve found a bug

Always feel free to ask on the mailing list (h5py at Google Groups). Discussions there are seen by lots of people and
are archived by Google. Even if the issue you’re having turns out not to be a bug in the end, other people can benefit
from a record of the conversation.

By the way, nobody will get mad if you file a bug and it turns out to be something else. That’s just how software
development goes.

What to include

When filing a bug, there are two things you should include. The first is the output of h5py.version.info:

>>> import h5py
>>> print(h5py.version.info)

The second is a detailed explanation of what went wrong. Unless the bug is really trivial, include code if you can,
either via GitHub’s inline markup:

```
import h5py
h5py.explode() # Destroyed my computer!

```

or by uploading a code sample to Github Gist.

6.2.2 How to Get Your Code into h5py

This section describes how to contribute changes to the h5py code base. Before you start, be sure to read the h5py
license and contributor agreement in “license.txt”. You can find this in the source distribution, or view it online at the
main h5py repository at GitHub.

The basic workflow is to clone h5py with git, make your changes in a topic branch, and then create a pull request at
GitHub asking to merge the changes into the main h5py project.

Here are some tips to getting your pull requests accepted:

1. Let people know you’re working on something. This could mean posting a comment in an open issue, or sending
an email to the mailing list. There’s nothing wrong with just opening a pull request, but it might save you time
if you ask for advice first.

2. Keep your changes focused. If you’re fixing multiple issues, file multiple pull requests. Try to keep the amount
of reformatting clutter small so the maintainers can easily see what you’ve changed in a diff.

3. Unit tests are mandatory for new features. This doesn’t mean hundreds (or even dozens) of tests! Just enough to
make sure the feature works as advertised. The maintainers will let you know if more are needed.

96 Chapter 6. Meta-info about the h5py project

https://github.com/h5py/h5py/issues
http://gist.github.com

h5py Documentation, Release 3.10.0

Clone the h5py repository

The best way to do this is by signing in to GitHub and cloning the h5py project directly. You’ll end up with a new
repository under your account; for example, if your username is yourname, the repository would be at http://github.
com/yourname/h5py.

Then, clone your new copy of h5py to your local machine:

$ git clone http://github.com/yourname/h5py

Create a topic branch for your feature

Check out a new branch for the bugfix or feature you’re writing:

$ git checkout -b newfeature master

The exact name of the branch can be anything you want. For bug fixes, one approach is to put the issue number in the
branch name.

We develop all changes against the master branch. If we’re making a bugfix release, a bot will backport merged pull
requests.

Implement the feature!

You can implement the feature as a number of small changes, or as one big commit; there’s no project policy. Double-
check to make sure you’ve included all your files; run git status and check the output.

Run the tests

The easiest way to run the tests is with tox:

pip install tox # Get tox

tox -e py37-test-deps # Run tests in one environment
tox # Run tests in all possible environments
tox -a # List defined environments

Write a release note

Changes which could affect people building and using h5py after the next release should have a news entry. You don’t
need to do this if your changes don’t affect usage, e.g. adding tests or correcting comments.

In the news/ folder, make a copy of TEMPLATE.rst named after your branch. Edit the new file, adding a sentence or
two about what you’ve added or fixed. Commit this to git too.

News entries are merged into the what’s new documents for each release. They should allow someone to quickly
understand what a new feature is, or whether a bug they care about has been fixed. E.g.:

Bug fixes

* Fix reading data for region references pointing to an empty selection.

6.2. Bug Reports & Contributions 97

http://github.com/yourname/h5py
http://github.com/yourname/h5py
https://tox.readthedocs.io/en/latest/

h5py Documentation, Release 3.10.0

The Building h5py section is for changes which affect how people build h5py from source. It’s not about how we make
prebuilt wheels; changes to that which make a visible difference can go in New features or Bug fixes.

Push your changes back and open a pull request

Push your topic branch back up to your GitHub clone:

$ git push origin newfeature

Then, create a pull request based on your topic branch.

Work with the maintainers

Your pull request might be accepted right away. More commonly, the maintainers will post comments asking you to
fix minor things, like add a few tests, clean up the style to be PEP-8 compliant, etc.

The pull request page also shows the results of building and testing the modified code on Travis and Appveyor CI and
Azure Pipelines. Check back after about 30 minutes to see if the build succeeded, and if not, try to modify your changes
to make it work.

When making changes after creating your pull request, just add commits to your topic branch and push them to your
GitHub repository. Don’t try to rebase or open a new pull request! We don’t mind having a few extra commits in the
history, and it’s helpful to keep all the history together in one place.

6.2.3 How to Modify h5py

This section is a little more involved, and provides tips on how to modify h5py. The h5py package is built in layers.
Starting from the bottom, they are:

1. The HDF5 C API (provided by libhdf5)

2. Auto-generated Cython wrappers for the C API (api_gen.py)

3. Low-level interface, written in Cython, using the wrappers from (2)

4. High-level interface, written in Python, with things like h5py.File.

5. Unit test code

Rather than talk about the layers in an abstract way, the parts below are guides to adding specific functionality to various
parts of h5py. Most sections span at least two or three of these layers.

Adding a function from the HDF5 C API

This is one of the most common contributed changes. The example below shows how one would add the function
H5Dget_storage_size, which determines the space on disk used by an HDF5 dataset. This function is already
partially wrapped in h5py, so you can see how it works.

It’s recommended that you follow along, if not by actually adding the feature then by at least opening the various files
as we work through the example.

First, get ahold of the function signature; the easiest place for this is at the online HDF5 Reference Manual. Then, add
the function’s C signature to the file api_functions.txt:

hsize_t H5Dget_storage_size(hid_t dset_id)

98 Chapter 6. Meta-info about the h5py project

https://help.github.com/articles/creating-a-pull-request
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html

h5py Documentation, Release 3.10.0

This particular signature uses types (hsize_t, hid_t) which are already defined elsewhere. But if the function you’re
adding needs a struct or enum definition, you can add it using Cython code to the file api_types_hdf5.pxd.

The next step is to add a Cython function or method which calls the function you added. The h5py modules follow the
naming convention of the C API; functions starting with H5D are wrapped in h5d.pyx.

Opening h5d.pyx, we notice that since this function takes a dataset identifier as the first argument, it belongs as a
method on the DatasetID object. We write a wrapper method:

def get_storage_size(self):
""" () => LONG storage_size

Determine the amount of file space required for a dataset. Note
this only counts the space which has actually been allocated; it
may even be zero.

"""
return H5Dget_storage_size(self.id)

The first line of the docstring gives the method signature. This is necessary because Cython will use a “generic”
signature like method(*args, **kwds) when the file is compiled. The h5py documentation system will extract the
first line and use it as the signature.

Next, we decide whether we want to add access to this function to the high-level interface. That means users of the
top-level h5py.Dataset object will be able to see how much space on disk their files use. The high-level interface is
implemented in the subpackage h5py._hl, and the Dataset object is in module dataset.py. Opening it up, we add a
property on the Dataset object:

@property
def storagesize(self):

""" Size (in bytes) of this dataset on disk. """
return self.id.get_storage_size()

You’ll see that the low-level DatasetID object is available on the high-level Dataset object as obj.id. This is true
of all the high-level objects, like File and Group as well.

Finally (and don’t skip this step), we write unit tests for this feature. Since the feature is ultimately exposed at the
high-level interface, it’s OK to write tests for the Dataset.storagesize property only. Unit tests for the high-level
interface are located in the “tests” subfolder, right near dataset.py.

It looks like the right file is test_dataset.py. Unit tests are implemented as methods on custom unittest.
UnitTest subclasses; each new feature should be tested by its own new class. In the test_dataset module, we
see there’s already a subclass called BaseDataset, which implements some simple set-up and cleanup methods and
provides a h5py.File object as obj.f. We’ll base our test class on that:

class TestStorageSize(BaseDataset):

"""
Feature: Dataset.storagesize indicates how much space is used.

"""

def test_empty(self):
""" Empty datasets take no space on disk """
dset = self.f.create_dataset("x", (100,100))
self.assertEqual(dset.storagesize, 0)

def test_data(self):
(continues on next page)

6.2. Bug Reports & Contributions 99

h5py Documentation, Release 3.10.0

(continued from previous page)

""" Storage size is correct for non-empty datasets """
dset = self.f.create_dataset("x", (100,), dtype='uint8')
dset[...] = 42
self.assertEqual(dset.storagesize, 100)

This set of tests would be adequate to get a pull request approved. We don’t test every combination under the sun
(different ranks, datasets with more than 2**32 elements, datasets with the string “kumquat” in the name. . .), but the
basic, commonly encountered set of conditions.

To build and test our changes, we have to do a few things. First of all, run the file api_gen.py to re-generate the
Cython wrappers from api_functions.txt:

$ python api_gen.py

Then build the project, which recompiles h5d.pyx:

$ python setup.py build

Finally, run the test suite, which includes the two methods we just wrote:

$ python setup.py test

If the tests pass, the feature is ready for a pull request.

Adding a function only available in certain versions of HDF5

At the moment, h5py must be compatible with HDF5 back to version 1.10.4. But it’s possible to conditionally include
functions which only appear in newer versions of HDF5. It’s also possible to mark functions which require Parallel
HDF5. For example, the function H5Fset_mpi_atomicitywas introduced in HDF5 1.8.9 and requires Parallel HDF5.
Specifiers before the signature in api_functions.txt communicate this:

MPI 1.8.9 herr_t H5Fset_mpi_atomicity(hid_t file_id, hbool_t flag)

You can specify either, both or none of “MPI” or a version number in “X.Y.Z” format.

In the Cython code, these show up as “preprocessor” defines MPI and HDF5_VERSION. So the low-level implementation
(as a method on h5py.h5f.FileID) looks like this:

IF MPI and HDF5_VERSION >= (1, 8, 9):

def set_mpi_atomicity(self, bint atomicity):
""" (BOOL atomicity)

For MPI-IO driver, set to atomic (True), which guarantees sequential
I/O semantics, or non-atomic (False), which improves performance.

Default is False.

Feature requires: 1.8.9 and Parallel HDF5
"""
H5Fset_mpi_atomicity(self.id, <hbool_t>atomicity)

High-level code can check the version of the HDF5 library, or check to see if the method is present on FileID objects.

100 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 3.10.0

Testing MPI-only features/code

Typically to run code under MPI, mpirun must be used to start the MPI processes. Similarly, tests using MPI features
(such as collective IO), must also be run under mpirun. h5py uses pytest markers (specifically pytest.mark.mpi and
other markers from pytest-mpi) to specify which tests require usage of mpirun, and will handle skipping the tests as
needed. A simple example of how to do this is:

@pytest.mark.mpi
def test_mpi_feature():
import mpi4py
test the MPI feature

To run these tests, you’ll need to:

1. Have tox installed (e.g. via pip install tox)

2. Have HDF5 built with MPI as per Building against Parallel HDF5

Then running:

$ CC='mpicc' HDF5_MPI=ON tox -e py37-test-deps-mpi4py

should run the tests. You may need to pass HDF5_DIR depending on the location of the HDF5 with MPI support. You
can choose which python version to build against by changing py37 (e.g. py36 runs python 3.6, this is a tox feature),
and test with the minimum version requirements by using mindeps rather than deps.

If you get an error similar to:

There are not enough slots available in the system to satisfy the 4 slots
that were requested by the application:
python

Either request fewer slots for your application, or make more slots available
for use.

then you need to reduce the number of MPI processes you are asking MPI to use. If you have already reduced the number
of processes requested (or are running the default number which is 2), you will need to look up the documentation for
your MPI implementation for handling this error. On OpenMPI (which is usually the default MPI implementation on
most systems), running:

$ export OMPI_MCA_rmaps_base_oversubscribe=1

will instruct OpenMPI to allow more MPI processes than available cores on your system.

If you need to pass additional environment variables to your MPI implementation, add these variables to the passenv
setting in the tox.ini, and send us a PR with that change noting the MPI implementation.

6.2. Bug Reports & Contributions 101

https://pytest-mpi.readthedocs.io

h5py Documentation, Release 3.10.0

6.3 Release Guide

h5py uses rever for release management. To install rever, use either pip or conda:

pip
$ pip install re-ver

conda
$ conda install -c conda-forge rever

6.3.1 Performing releases

Once rever is installed, always run the check command to make sure that everything you need to perform the release
is correctly installed and that you have the correct permissions. All rever commands should be run in the root level of
the repository.

Step 1 (repeat until successful)

$ rever check

Resolve any issues that may have come up, and keep running rever check until it passes. After it is successful, simply
pass the version number you want to release (e.g. X.Y.Z) into the rever command.

Step 2

$ rever X.Y.Z

You probably want to make sure (with git tag) that the new version number is available. If any release activities fail
while running this command, you may safely re-run this command. You can also safely undo previously run activities.
Please see the rever docs for more details.

6.4 FAQ

6.4.1 What datatypes are supported?

Below is a complete list of types for which h5py supports reading, writing and creating datasets. Each type is mapped
to a native NumPy type.

Fully supported types:

102 Chapter 6. Meta-info about the h5py project

https://regro.github.io/rever-docs/

h5py Documentation, Release 3.10.0

Type Precisions Notes
Bitfield 1, 2, 4 or 8 byte, BE/LE Read as unsigned integers
Integer 1, 2, 4 or 8 byte, BE/LE, signed/unsigned
Float 2, 4, 8, 12, 16 byte, BE/LE
Complex 8 or 16 byte, BE/LE Stored as HDF5 struct
Compound Arbitrary names and offsets
Strings (fixed-length) Any length
Strings (variable-length) Any length, ASCII or Unicode
Opaque (kind ‘V’) Any length
Boolean NumPy 1-byte bool Stored as HDF5 enum
Array Any supported type
Enumeration Any NumPy integer type Read/write as integers
References Region and object
Variable length array Any supported type See Special Types

Other numpy dtypes, such as datetime64 and timedelta64, can optionally be stored in HDF5 opaque data using
opaque_dtype(). h5py will read this data back with the same dtype, but other software probably will not under-
stand it.

Unsupported types:

Type Status
HDF5 “time” type
NumPy “U” strings No HDF5 equivalent
NumPy generic “O” Not planned

6.4.2 What compression/processing filters are supported?

Filter Function Availability
DEFLATE/GZIP Standard HDF5 compression All platforms
SHUFFLE Increase compression ratio All platforms
FLETCHER32 Error detection All platforms
Scale-offset Integer/float scaling and truncation All platforms
SZIP Fast, patented compression for

int/float • UNIX: if supplied with
HDF5.

• Windows: read-only

LZF Very fast compression, all types Ships with h5py, C source available

6.4.3 What file drivers are available?

A number of different HDF5 “drivers”, which provide different modes of access to the filesystem, are accessible in
h5py via the high-level interface. The currently supported drivers are:

6.4. FAQ 103

http://h5py.org/lzf

h5py Documentation, Release 3.10.0

Driver Purpose Notes
sec2 Standard optimized driver Default on UNIX/Windows
stdio Buffered I/O using stdio.h
core In-memory file (optionally backed to disk)
family Multi-file driver
mpio Parallel HDF5 file access

6.4.4 What’s the difference between h5py and PyTables?

The two projects have different design goals. PyTables presents a database-like approach to data storage, providing
features like indexing and fast “in-kernel” queries on dataset contents. It also has a custom system to represent data
types.

In contrast, h5py is an attempt to map the HDF5 feature set to NumPy as closely as possible. For example, the high-
level type system uses NumPy dtype objects exclusively, and method and attribute naming follows Python and NumPy
conventions for dictionary and array access (i.e. “.dtype” and “.shape” attributes for datasets, group[name] indexing
syntax for groups, etc).

Underneath the “high-level” interface to h5py (i.e. NumPy-array-like objects; what you’ll typically be using) is a large
Cython layer which calls into C. This “low-level” interface provides access to nearly all of the HDF5 C API. This layer
is object-oriented with respect to HDF5 identifiers, supports reference counting, automatic translation between NumPy
and HDF5 type objects, translation between the HDF5 error stack and Python exceptions, and more.

This greatly simplifies the design of the complicated high-level interface, by relying on the “Pythonicity” of the C API
wrapping.

There’s also a PyTables perspective on this question at the PyTables FAQ.

6.4.5 Does h5py support Parallel HDF5?

Starting with version 2.2, h5py supports Parallel HDF5 on UNIX platforms. mpi4py is required, as well as an MPIO-
enabled build of HDF5. Check out Parallel HDF5 for details.

6.4.6 Variable-length (VLEN) data

Starting with version 2.3, all supported types can be stored in variable-length arrays (previously only variable-length
byte and unicode strings were supported) See Special Types for use details. Please note that since strings in HDF5 are
encoded as ASCII or UTF-8, NUL bytes are not allowed in strings.

6.4.7 Enumerated types

HDF5 enumerated types are supported. As NumPy has no native enum type, they are treated on the Python side as
integers with a small amount of metadata attached to the dtype.

104 Chapter 6. Meta-info about the h5py project

http://www.pytables.org/FAQ.html#how-does-pytables-compare-with-the-h5py-project

h5py Documentation, Release 3.10.0

6.4.8 NumPy object types

Storage of generic objects (NumPy dtype “O”) is not implemented and not planned to be implemented, as the design
goal for h5py is to expose the HDF5 feature set, not add to it. However, objects picked to the “plain-text” protocol
(protocol 0) can be stored in HDF5 as strings.

6.4.9 Appending data to a dataset

The short response is that h5py is NumPy-like, not database-like. Unlike the HDF5 packet-table interface (and PyTa-
bles), there is no concept of appending rows. Rather, you can expand the shape of the dataset to fit your needs. For
example, if I have a series of time traces 1024 points long, I can create an extendable dataset to store them:

>>> dset = myfile.create_dataset("MyDataset", (10, 1024), maxshape=(None, 1024))
>>> dset.shape
(10,1024)

The keyword argument “maxshape” tells HDF5 that the first dimension of the dataset can be expanded to any size, while
the second dimension is limited to a maximum size of 1024. We create the dataset with room for an initial ensemble
of 10 time traces. If we later want to store 10 more time traces, the dataset can be expanded along the first axis:

>>> dset.resize(20, axis=0) # or dset.resize((20,1024))
>>> dset.shape
(20, 1024)

Each axis can be resized up to the maximum values in “maxshape”. Things to note:

• Unlike NumPy arrays, when you resize a dataset the indices of existing data do not change; each axis grows or
shrinks independently

• The dataset rank (number of dimensions) is fixed when it is created

6.4.10 Unicode

As of h5py 2.0.0, Unicode is supported for file names as well as for objects in the file. When object names are read,
they are returned as Unicode by default.

However, HDF5 has no predefined datatype to represent fixed-width UTF-16 or UTF-32 (NumPy format) strings.
Therefore, the NumPy ‘U’ datatype is not supported.

6.4.11 Exceptions

h5py tries to map the error codes from hdf5 to the corresponding Exception class on the Python side. However the
HDF5 group does not consider the error codes to be public API so we can not guarantee type stability of the exceptions
raised.

6.4. FAQ 105

h5py Documentation, Release 3.10.0

6.4.12 Development

Building from Git

We moved to GitHub in December of 2012 (http://github.com/h5py/h5py).

We use the following conventions for branches and tags:

• master: integration branch for the next minor (or major) version

• 2.0, 2.1, 2.2, etc: bugfix branches for released versions

• tags 2.0.0, 2.0.1, etc: Released bugfix versions

To build from a Git checkout:

Clone the project:

$ git clone https://github.com/h5py/h5py.git
$ cd h5py

(Optional) Choose which branch to build from (e.g. a stable branch):

$ git checkout 2.1

Build the project. If given, /path/to/hdf5 should point to a directory containing a compiled, shared-library build of
HDF5 (containing things like “include” and “lib”):

$ python setup.py build [--hdf5=/path/to/hdf5]

(Optional) Run the unit tests:

$ python setup.py test

Report any failing tests to the mailing list (h5py at googlegroups), or by filing a bug report at GitHub.

6.5 Licenses and legal info

6.5.1 Copyright Notice and Statement for the h5py Project

Copyright (c) 2008 Andrew Collette and contributors
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the

(continues on next page)

106 Chapter 6. Meta-info about the h5py project

http://github.com/h5py/h5py

h5py Documentation, Release 3.10.0

(continued from previous page)

distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.5.2 HDF5 Copyright Statement

HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 2006-2007 by The HDF Group (THG).

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA)
at the University of Illinois, Fortner Software, Unidata Program
Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly
and Mark Adler (gzip), and Digital Equipment Corporation (DEC).

Redistribution and use in source and binary forms, with or without
modification, are permitted for any purpose (including commercial
purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions, and the following
disclaimer in the documentation and/or materials provided with the
distribution.

3. In addition, redistributions of modified forms of the source or
binary code must carry prominent notices stating that the original
code was changed and the date of the change.

4. All publications or advertising materials mentioning features or
use of this software are asked, but not required, to acknowledge that
it was developed by The HDF Group and by the National Center for
Supercomputing Applications at the University of Illinois at

(continues on next page)

6.5. Licenses and legal info 107

h5py Documentation, Release 3.10.0

(continued from previous page)

Urbana-Champaign and credit the contributors.
5. Neither the name of The HDF Group, the name of the University,

nor the name of any Contributor may be used to endorse or promote
products derived from this software without specific prior written
permission from THG, the University, or the Contributor, respectively.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP (THG) AND THE
CONTRIBUTORS "AS IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED. In no event shall THG or the Contributors be liable for any
damages suffered by the users arising out of the use of this software,
even if advised of the possibility of such damage.

Portions of HDF5 were developed with support from the University of
California, Lawrence Livermore National Laboratory (UC LLNL). The
following statement applies to those portions of the product and must
be retained in any redistribution of source code, binaries,
documentation, and/or accompanying materials:

This work was partially produced at the University of California,
Lawrence Livermore National Laboratory (UC LLNL) under contract
no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy
(DOE) and The Regents of the University of California (University) for
the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately-
owned rights. Reference herein to any specific commercial products,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

6.5.3 PyTables Copyright Statement

Copyright Notice and Statement for PyTables Software Library and Utilities:

Copyright (c) 2002, 2003, 2004 Francesc Altet
Copyright (c) 2005, 2006, 2007 Carabos Coop. V.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are

(continues on next page)

108 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 3.10.0

(continued from previous page)

met:

a. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.

c. Neither the name of the Carabos Coop. V. nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.5.4 stdint.h (Windows version) License

Copyright (c) 2006-2008 Alexander Chemeris

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

(continues on next page)

6.5. Licenses and legal info 109

h5py Documentation, Release 3.10.0

(continued from previous page)

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.5.5 Python license

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-
ganization (“Licensee”) accessing and otherwise using Python Python 2.7.5 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python Python 2.7.5 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright 2001-2013 Python Software Foun-
dation; All Rights Reserved” are retained in Python Python 2.7.5 alone or in any derivative version prepared by
Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python Python 2.7.5 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python Python 2.7.5.

4. PSF is making Python Python 2.7.5 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON Python 2.7.5
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON Python 2.7.5
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON Python 2.7.5, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python Python 2.7.5, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

110 Chapter 6. Meta-info about the h5py project

INDEX

Symbols
__bool__() (h5py.Dataset method), 37
__bool__() (h5py.File method), 22
__bool__() (h5py.Group method), 26
__contains__() (h5py.AttributeManager method), 41
__contains__() (h5py.Group method), 25
__delitem__() (h5py.AttributeManager method), 41
__getitem__() (h5py.AttributeManager method), 41
__getitem__() (h5py.Dataset method), 37
__getitem__() (h5py.Group method), 25
__iter__() (h5py.AttributeManager method), 41
__iter__() (h5py.Group method), 25
__setitem__() (h5py.AttributeManager method), 41
__setitem__() (h5py.Dataset method), 37
__setitem__() (h5py.Group method), 25

A
asstr() (h5py.Dataset method), 38
astype() (h5py.Dataset method), 38
AttributeManager (class in h5py), 41
attrs (h5py.Dataset attribute), 40
attrs (h5py.Group attribute), 30

B
build_virtual_dataset() (h5py.Group method), 29

C
check_dtype() (in module h5py), 48
check_enum_dtype() (in module h5py), 47
check_opaque_dtype() (in module h5py), 48
check_string_dtype() (in module h5py), 46
check_vlen_dtype() (in module h5py), 47
chunks (h5py.Dataset attribute), 39
close() (h5py.File method), 22
compression (h5py.Dataset attribute), 39
compression_opts (h5py.Dataset attribute), 39
copy() (h5py.Group method), 27
create() (h5py.AttributeManager method), 41
create_dataset() (h5py.Group method), 28
create_dataset_like() (h5py.Group method), 29
create_group() (h5py.Group method), 27

create_virtual_dataset() (h5py.Group method), 29

D
Dataset (class in h5py), 37
dims (h5py.Dataset attribute), 40
driver (h5py.File attribute), 23
dtype (h5py.Dataset attribute), 39

E
encoding (h5py.string_info attribute), 46
enum_dtype() (in module h5py), 47
external (h5py.Dataset attribute), 40
ExternalLink (class in h5py), 30

F
fields() (h5py.Dataset method), 38
File (class in h5py), 21
file (h5py.Dataset attribute), 40
file (h5py.Group attribute), 30
filename (h5py.ExternalLink attribute), 30
filename (h5py.File attribute), 23
fillvalue (h5py.Dataset attribute), 40
fletcher32 (h5py.Dataset attribute), 40
flush() (h5py.File method), 22

G
get() (h5py.AttributeManager method), 41
get() (h5py.Group method), 26
get_id() (h5py.AttributeManager method), 41
Group (class in h5py), 25

H
HardLink (class in h5py), 30

I
id (h5py.Dataset attribute), 40
id (h5py.File attribute), 22
id (h5py.Group attribute), 30
is_scale (h5py.Dataset attribute), 40
is_virtual (h5py.Dataset attribute), 40
items() (h5py.AttributeManager method), 41

111

h5py Documentation, Release 3.10.0

items() (h5py.Group method), 26
iter_chunks() (h5py.Dataset method), 38

K
keys() (h5py.AttributeManager method), 41
keys() (h5py.Group method), 26

L
len() (h5py.Dataset method), 39
length (h5py.string_info attribute), 46
libver (h5py.File attribute), 23

M
make_scale() (h5py.Dataset method), 39
maxshape (h5py.Dataset attribute), 39
meta_block_size (h5py.File attribute), 23
mode (h5py.File attribute), 23
modify() (h5py.AttributeManager method), 42
move() (h5py.Group method), 27

N
name (h5py.Dataset attribute), 40
name (h5py.Group attribute), 30
nbytes (h5py.Dataset attribute), 39
ndim (h5py.Dataset attribute), 39

O
opaque_dtype() (in module h5py), 48

P
parent (h5py.Dataset attribute), 40
parent (h5py.Group attribute), 30
path (h5py.ExternalLink attribute), 30
path (h5py.SoftLink attribute), 30
Python Enhancement Proposals

PEP 538, 19

R
read_direct() (h5py.Dataset method), 38
ref (h5py.Dataset attribute), 40
ref (h5py.Group attribute), 30
regionref (h5py.Dataset attribute), 40
regionref (h5py.Group attribute), 30
require_dataset() (h5py.Group method), 29
require_group() (h5py.Group method), 28
resize() (h5py.Dataset method), 39

S
scaleoffset (h5py.Dataset attribute), 39
shape (h5py.Dataset attribute), 39
shuffle (h5py.Dataset attribute), 40
size (h5py.Dataset attribute), 39
SoftLink (class in h5py), 30

special_dtype() (in module h5py), 48
string_dtype() (in module h5py), 46
string_info (class in h5py), 46
swmr_mode (h5py.File attribute), 23

U
userblock_size (h5py.File attribute), 23

V
values() (h5py.AttributeManager method), 41
values() (h5py.Group method), 26
virtual_sources() (h5py.Dataset method), 39
VirtualLayout (class in h5py), 63
VirtualSource (class in h5py), 63
visit() (h5py.Group method), 26
visititems() (h5py.Group method), 27
vlen_dtype() (in module h5py), 47

W
write_direct() (h5py.Dataset method), 38

112 Index

	Where to start
	Other resources
	Introductory info
	Quick Start Guide
	Install
	Core concepts
	Appendix: Creating a file

	Groups and hierarchical organization
	Attributes

	Installation
	Pre-built installation (recommended)
	Python Distributions
	Wheels
	OS-Specific Package Managers

	Source installation
	Development installation
	Source installation on OSX/MacOS
	Source installation on Linux/Other Unix
	Source installation on Windows
	Downstream packagers

	Custom installation
	Building against Parallel HDF5

	High-level API reference
	File Objects
	Opening & creating files
	File drivers
	Python file-like objects
	Version bounding
	Closing files
	User block
	Filenames on different systems
	macOS (OSX)
	Linux (and non-macOS Unix)
	Windows

	Chunk cache
	Data alignment
	Meta block size
	Reference

	Groups
	Creating groups
	Dict interface and links
	Hard links
	Soft links
	External links

	Reference
	Link classes

	Datasets
	Creating datasets
	Reading & writing data
	Multiple indexing
	Length and iteration

	Chunked storage
	Resizable datasets
	Filter pipeline
	Lossless compression filters
	Custom compression filters
	Scale-Offset filter
	Shuffle filter
	Fletcher32 filter

	Multi-Block Selection
	Fancy indexing
	Creating and Reading Empty (or Null) datasets and attributes
	Reference

	Attributes
	Reference

	Dimension Scales
	Low-Level API

	Advanced topics
	Configuring h5py
	Library configuration

	Special types
	How special types are represented
	Variable-length strings
	Arbitrary vlen data
	Enumerated types
	Object and region references
	Storing other types as opaque data
	Older API

	Strings in HDF5
	Reading strings
	Storing strings
	What about NumPy’s U type?

	How to store raw binary data
	Object names
	Encodings

	Object and Region References
	Using object references
	Using region references
	Storing references in a dataset
	Storing references in an attribute
	Null references

	Parallel HDF5
	How does Parallel HDF5 work?
	Building against Parallel HDF5
	Using Parallel HDF5 from h5py
	Collective versus independent operations
	MPI atomic mode
	More information

	Single Writer Multiple Reader (SWMR)
	What is SWMR?
	Using the SWMR feature from h5py
	Examples
	Dataset monitor with inotify
	Multiprocess concurrent write and read

	Virtual Datasets (VDS)
	What are virtual datasets?
	Creating virtual datasets in h5py
	Examples
	Reference

	Tools and Related Projects
	IPython
	Exploring and Visualising HDF5 files
	Additional Filters
	Libraries extending h5py

	Meta-info about the h5py project
	“What’s new” documents
	What’s new in h5py 3.10
	New features
	Deprecations & removals
	Exposing HDF5 functions
	Bug fixes
	Building h5py

	What’s new in h5py 3.9
	New features
	Deprecations & removals
	Exposing HDF5 functions
	Bug fixes
	Building h5py

	What’s new in h5py 3.8
	New features
	Exposing HDF5 functions
	Bug fixes
	Building h5py

	What’s new in h5py 3.7
	New features
	Bug fixes
	Exposing HDF5 functions
	Building h5py

	What’s new in h5py 3.6
	New features
	Deprecations
	Building h5py
	Development

	What’s new in h5py 3.5
	New features
	Exposing HDF5 functions
	Breaking changes & deprecations
	Bug fixes

	What’s new in h5py 3.4
	New features
	Bug fixes

	What’s new in h5py 3.3
	New features
	Deprecations
	Bug fixes

	What’s new in h5py 3.2
	New features
	Breaking changes & deprecations
	Exposing HDF5 functions
	Bug fixes
	3.2.1 bug fix release

	What’s new in h5py 3.1
	Bug fixes
	Building h5py
	Development

	What’s new in h5py 3.0
	New features
	Breaking changes & deprecations
	Exposing HDF5 functions
	Bug fixes
	Building h5py
	Development

	What’s new in h5py 2.10
	New features
	Deprecations
	Exposing HDF5 functions
	Bugfixes
	Building h5py
	Development

	What’s new in h5py 2.9
	New features
	Exposing HDF5 functions
	Bugfixes
	Support for old Python

	What’s new in h5py 2.8
	API changes
	Features
	Bug fixes
	Wheels HDF5 Version
	CI/Testing improvements and fixes
	Other changes
	Acknowledgements and Thanks

	What’s new in h5py 2.7.1
	Bug fixes
	Fix h5py segfaulting on some Python 3 versions
	Avoid unaligned memory access in conversion functions

	What’s new in h5py 2.7
	Python 3.2 is no longer supported
	Improved testing support
	Improved python compatibility
	Documentation improvements
	setup.py improvements
	Support for additional HDF5 features added
	Improvements to type system
	Other changes
	Acknowledgements

	What’s new in h5py 2.6
	Support for HDF5 Virtual Dataset API
	Add MPI Collective I/O Support
	Numerous build/testing/CI improvements
	Cleanup of codebase based on pylint
	Fixes to low-level API
	Documentation improvements
	Other changes
	Acknowledgements

	What’s new in h5py 2.5
	Experimental support for Single Writer Multiple Reader (SWMR)
	Other changes
	Acknowledgements

	What’s new in h5py 2.4
	Build system changes
	Files will now auto-close
	Thread safety improvements
	External link improvements
	Thanks to

	What’s new in h5py 2.3
	Support for arbitrary vlen data
	Improved exception messages
	Improved setuptools support
	Multiple low-level additions
	Improved support for MPI features
	Readonly files can now be opened in default mode
	Single-step build for HDF5 on Windows
	Thanks to

	What’s new in h5py 2.2
	Support for Parallel HDF5
	Support for Python 3.3
	Mini float support (issue #141)
	HDF5 scale/offset filter
	Field indexing is now allowed when writing to a dataset (issue #42)
	Region references preserve shape (issue #295)
	Committed types can be linked to datasets and attributes
	move method on Group objects

	What’s new in h5py 2.1
	Dimension scales
	Unicode strings allowed in attributes
	Dataset size property
	Dataset.value property is now deprecated.
	Bug fixes

	What’s new in h5py 2.0
	Enhancements unlikely to affect compatibility
	Changes which may break existing code
	Supported HDF5/Python versions
	Group, Dataset and Datatype constructors have changed
	Unicode is now used for object names
	File objects must be manually closed
	Changes to scalar slicing code
	Array scalars now always returned when indexing a dataset
	Reading object-like data strips special type information
	The selections module has been removed
	The H5Error exception class has been removed (along with h5py.h5e)
	File .mode property is now either ‘r’ or ‘r+
	Long-deprecated dict methods have been removed

	Known issues

	Bug Reports & Contributions
	How to File a Bug Report
	If you’re unsure whether you’ve found a bug
	What to include

	How to Get Your Code into h5py
	Clone the h5py repository
	Create a topic branch for your feature
	Implement the feature!
	Run the tests
	Write a release note
	Push your changes back and open a pull request
	Work with the maintainers

	How to Modify h5py
	Adding a function from the HDF5 C API
	Adding a function only available in certain versions of HDF5
	Testing MPI-only features/code

	Release Guide
	Performing releases

	FAQ
	What datatypes are supported?
	What compression/processing filters are supported?
	What file drivers are available?
	What’s the difference between h5py and PyTables?
	Does h5py support Parallel HDF5?
	Variable-length (VLEN) data
	Enumerated types
	NumPy object types
	Appending data to a dataset
	Unicode
	Exceptions
	Development
	Building from Git
	To build from a Git checkout:

	Licenses and legal info
	Copyright Notice and Statement for the h5py Project
	HDF5 Copyright Statement
	PyTables Copyright Statement
	stdint.h (Windows version) License
	Python license

	Index

