
h5py Documentation
Release 2.6.0

Andrew Collette and contributors

Mar 08, 2018

Contents

1 Where to start 3

2 Other resources 5

3 Introductory info 7

4 High-level API reference 13

5 Advanced topics 31

6 Meta-info about the h5py project 49

i

ii

h5py Documentation, Release 2.6.0

The h5py package is a Pythonic interface to the HDF5 binary data format.

HDF5 lets you store huge amounts of numerical data, and easily manipulate that data from NumPy. For example, you
can slice into multi-terabyte datasets stored on disk, as if they were real NumPy arrays. Thousands of datasets can be
stored in a single file, categorized and tagged however you want.

Contents 1

http://hdfgroup.org

h5py Documentation, Release 2.6.0

2 Contents

CHAPTER 1

Where to start

• Quick-start guide

• Installation

3

h5py Documentation, Release 2.6.0

4 Chapter 1. Where to start

CHAPTER 2

Other resources

• Python and HDF5 O’Reilly book

• Ask questions on the mailing list at Google Groups

• GitHub project

5

http://shop.oreilly.com/product/0636920030249.do
http://groups.google.com/d/forum/h5py
https://github.com/h5py/h5py

h5py Documentation, Release 2.6.0

6 Chapter 2. Other resources

CHAPTER 3

Introductory info

3.1 Quick Start Guide

3.1.1 Install

With Anaconda or Miniconda:

conda install h5py

With Enthought Canopy, use the GUI package manager or:

enpkg h5py

With pip or setup.py, see Installation.

3.1.2 Core concepts

An HDF5 file is a container for two kinds of objects: datasets, which are array-like collections of data, and groups,
which are folder-like containers that hold datasets and other groups. The most fundamental thing to remember when
using h5py is:

Groups work like dictionaries, and datasets work like NumPy arrays

The very first thing you’ll need to do is create a new file:

>>> import h5py
>>> import numpy as np
>>>
>>> f = h5py.File("mytestfile.hdf5", "w")

The File object is your starting point. It has a couple of methods which look interesting. One of them is
create_dataset:

7

http://continuum.io/downloads
http://conda.pydata.org/miniconda.html
https://www.enthought.com/products/canopy/

h5py Documentation, Release 2.6.0

>>> dset = f.create_dataset("mydataset", (100,), dtype='i')

The object we created isn’t an array, but an HDF5 dataset. Like NumPy arrays, datasets have both a shape and a data
type:

>>> dset.shape
(100,)
>>> dset.dtype
dtype('int32')

They also support array-style slicing. This is how you read and write data from a dataset in the file:

>>> dset[...] = np.arange(100)
>>> dset[0]
0
>>> dset[10]
9
>>> dset[0:100:10]
array([0, 10, 20, 30, 40, 50, 60, 70, 80, 90])

For more, see File Objects and Datasets.

3.1.3 Groups and hierarchical organization

“HDF” stands for “Hierarchical Data Format”. Every object in an HDF5 file has a name, and they’re arranged in a
POSIX-style hierarchy with /-separators:

>>> dset.name
u'/mydataset'

The “folders” in this system are called groups. The File object we created is itself a group, in this case the root
group, named /:

>>> f.name
u'/'

Creating a subgroup is accomplished via the aptly-named create_group:

>>> grp = f.create_group("subgroup")

All Group objects also have the create_* methods like File:

>>> dset2 = grp.create_dataset("another_dataset", (50,), dtype='f')
>>> dset2.name
u'/subgroup/another_dataset'

By the way, you don’t have to create all the intermediate groups manually. Specifying a full path works just fine:

>>> dset3 = f.create_dataset('subgroup2/dataset_three', (10,), dtype='i')
>>> dset3.name
u'/subgroup2/dataset_three'

Groups support most of the Python dictionary-style interface. You retrieve objects in the file using the item-retrieval
syntax:

8 Chapter 3. Introductory info

h5py Documentation, Release 2.6.0

>>> dataset_three = f['subgroup2/dataset_three']

Iterating over a group provides the names of its members:

>>> for name in f:
... print name
mydataset
subgroup
subgroup2

Containership testing also uses names:

>>> "mydataset" in f
True
>>> "somethingelse" in f
False

You can even use full path names:

>>> "subgroup/another_dataset" in f
True

There are also the familiar keys(), values(), items() and iter() methods, as well as get().

Since iterating over a group only yields its directly-attached members, iterating over an entire file is accomplished
with the Group methods visit() and visititems(), which take a callable:

>>> def printname(name):
... print name
>>> f.visit(printname)
mydataset
subgroup
subgroup/another_dataset
subgroup2
subgroup2/dataset_three

For more, see Groups.

3.1.4 Attributes

One of the best features of HDF5 is that you can store metadata right next to the data it describes. All groups and
datasets support attached named bits of data called attributes.

Attributes are accessed through the attrs proxy object, which again implements the dictionary interface:

>>> dset.attrs['temperature'] = 99.5
>>> dset.attrs['temperature']
99.5
>>> 'temperature' in dset.attrs
True

For more, see Attributes.

3.1. Quick Start Guide 9

h5py Documentation, Release 2.6.0

3.2 Installation

3.2.1 Pre-configured installation (recommended)

It’s strongly recommended that you use a Python distribution or package manager to install h5py along with its com-
piled dependencies. Here are some which are popular in the Python community:

• Anaconda or Miniconda (Mac, Windows, Linux)

• Enthought Canopy (Mac, Windows, Linux)

• PythonXY (Windows)

conda install h5py # Anaconda/Miniconda
enpkg h5py # Canopy

Or, use your package manager:

• apt-get (Linux/Debian, including Ubuntu)

• yum (Linux/Red Hat, including Fedora and CentOS)

• Homebrew (OS X)

3.2.2 Source installation on Linux and OS X

You need, via apt-get, yum or Homebrew:

• Python 2.6, 2.7, 3.3, or 3.4 with development headers (python-dev or similar)

• HDF5 1.8.4 or newer, shared library version with development headers (libhdf5-dev or similar)

• NumPy 1.6.1 or later

$ pip install h5py

or, from a tarball:

$ python setup.py install

3.2.3 Source installation on Windows

Installing from source on Windows is effectively impossible because of the C library dependencies involved.

If you don’t want to use Anaconda, Canopy, or PythonXY, download a third-party wheel from Chris Gohlke’s excellent
collection.

3.2.4 Custom installation

You can specify build options for h5py with the configure option to setup.py. Options may be given together or
separately:

$ python setup.py configure --hdf5=/path/to/hdf5
$ python setup.py configure --hdf5-version=X.Y.Z
$ python setup.py configure --mpi

10 Chapter 3. Introductory info

http://continuum.io/downloads
http://conda.pydata.org/miniconda.html
https://www.enthought.com/products/canopy/
https://code.google.com/p/pythonxy/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/

h5py Documentation, Release 2.6.0

Note the --hdf5-version option is generally not needed, as h5py auto-detects the installed version of HDF5 (even
for custom locations).

Once set, build options apply to all future builds in the source directory. You can reset to the defaults with the
--reset option:

$ python setup.py configure --reset

You can also configure h5py using environment variables. This is handy when installing via pip, as you don’t have
direct access to setup.py:

$ HDF5_DIR=/path/to/hdf5 pip install h5py
$ HDF5_VERSION=X.Y.Z pip install h5py

Here’s a list of all the configure options currently supported:

Option Via setup.py Via environment variable
Custom path to HDF5 --hdf5=/path/to/hdf5 HDF5_DIR=/path/to/hdf5
Force HDF5 version --hdf5-version=X.Y.Z HDF5_VERSION=X.Y.Z
Enable MPI mode --mpi (none)

3.2.5 Building against Parallel HDF5

If you just want to build with mpicc, and don’t care about using Parallel HDF5 features in h5py itself:

$ export CC=mpicc
$ python setup.py install

If you want access to the full Parallel HDF5 feature set in h5py (Parallel HDF5), you will have to build in MPI mode.
Right now this must be done with command-line options from the h5py tarball.

You will need a shared-library build of Parallel HDF5 (i.e. built with ./configure –enable-shared –enable-
parallel).

To build in MPI mode, use the --mpi option to setup.py configure:

$ export CC=mpicc
$ python setup.py configure --mpi
$ python setup.py build

See also Parallel HDF5.

3.2. Installation 11

h5py Documentation, Release 2.6.0

12 Chapter 3. Introductory info

CHAPTER 4

High-level API reference

4.1 File Objects

File objects serve as your entry point into the world of HDF5. In addition to the File-specific capabilities listed here,
every File instance is also an HDF5 group representing the root group of the file.

4.1.1 Opening & creating files

HDF5 files work generally like standard Python file objects. They support standard modes like r/w/a, and should be
closed when they are no longer in use. However, there is obviously no concept of “text” vs “binary” mode.

>>> f = h5py.File('myfile.hdf5','r')

The file name may be a byte string or unicode string. Valid modes are:

r Readonly, file must exist
r+ Read/write, file must exist
w Create file, truncate if exists
w- or x Create file, fail if exists
a Read/write if exists, create otherwise (default)

4.1.2 File drivers

HDF5 ships with a variety of different low-level drivers, which map the logical HDF5 address space to different storage
mechanisms. You can specify which driver you want to use when the file is opened:

>>> f = h5py.File('myfile.hdf5', driver=<driver name>, <driver_kwds>)

For example, the HDF5 “core” driver can be used to create a purely in-memory HDF5 file, optionally written out to
disk when it is closed. Here’s a list of supported drivers and their options:

13

h5py Documentation, Release 2.6.0

None Strongly recommended. Use the standard HDF5 driver appropriate for the current platform. On
UNIX, this is the H5FD_SEC2 driver; on Windows, it is H5FD_WINDOWS.

‘sec2’ Unbuffered, optimized I/O using standard POSIX functions.

‘stdio’ Buffered I/O using functions from stdio.h.

‘core’ Memory-map the entire file; all operations are performed in memory and written back out when
the file is closed. Keywords:

backing_store: If True (default), save changes to a real file when closing. If False, the file exists
purely in memory and is discarded when closed.

block_size: Increment (in bytes) by which memory is extended. Default is 64k.

‘family’ Store the file on disk as a series of fixed-length chunks. Useful if the file system doesn’t allow
large files. Note: the filename you provide must contain a printf-style integer format code (e.g.
%d”), which will be replaced by the file sequence number. Keywords:

memb_size: Maximum file size (default is 2**31-1).

4.1.3 Version Bounding

HDF5 has been evolving for many years now. By default, the library will write objects in the most compatible fashion
possible, so that older versions will still be able to read files generated by modern programs. However, there can be
performance advantages if you are willing to forgo a certain level of backwards compatibility. By using the “libver”
option to File, you can specify the minimum and maximum sophistication of these structures:

>>> f = h5py.File('name.hdf5', libver='earliest') # most compatible
>>> f = h5py.File('name.hdf5', libver='latest') # most modern

Here “latest” means that HDF5 will always use the newest version of these structures without particular concern for
backwards compatibility. The “earliest” option means that HDF5 will make a best effort to be backwards compatible.

The default is “earliest”.

4.1.4 User block

HDF5 allows the user to insert arbitrary data at the beginning of the file, in a reserved space called the user block.
The length of the user block must be specified when the file is created. It can be either zero (the default) or a power
of two greater than or equal to 512. You can specify the size of the user block when creating a new file, via the
userblock_size keyword to File; the userblock size of an open file can likewise be queried through the File.
userblock_size property.

Modifying the user block on an open file is not supported; this is a limitation of the HDF5 library. However, once the
file is closed you are free to read and write data at the start of the file, provided your modifications don’t leave the user
block region.

4.1.5 Reference

Note: Unlike Python file objects, the attribute File.name gives the HDF5 name of the root group, “/”. To access
the on-disk name, use File.filename.

14 Chapter 4. High-level API reference

h5py Documentation, Release 2.6.0

class File(name, mode=None, driver=None, libver=None, userblock_size, **kwds)
Open or create a new file.

Note that in addition to the File-specific methods and properties listed below, File objects inherit the full interface
of Group.

Parameters

• name – Name of file (str or unicode), or an instance of h5f.FileID to bind to an existing
file identifier.

• mode – Mode in which to open file; one of (“w”, “r”, “r+”, “a”, “w-“). See Opening &
creating files.

• driver – File driver to use; see File drivers.

• libver – Compatibility bounds; see Version Bounding.

• userblock_size – Size (in bytes) of the user block. If nonzero, must be a power of 2
and at least 512. See User block.

• kwds – Driver-specific keywords; see File drivers.

close()
Close this file. All open objects will become invalid.

flush()
Request that the HDF5 library flush its buffers to disk.

id
Low-level identifier (an instance of FileID).

filename
Name of this file on disk. Generally a Unicode string; a byte string will be used if HDF5 returns a non-
UTF-8 encoded string.

mode
String indicating if the file is open readonly (“r”) or read-write (“r+”). Will always be one of these two
values, regardless of the mode used to open the file.

driver
String giving the driver used to open the file. Refer to File drivers for a list of drivers.

libver
2-tuple with library version settings. See Version Bounding.

userblock_size
Size of user block (in bytes). Generally 0. See User block.

4.2 Groups

Groups are the container mechanism by which HDF5 files are organized. From a Python perspective, they operate
somewhat like dictionaries. In this case the “keys” are the names of group members, and the “values” are the members
themselves (Group and Dataset) objects.

Group objects also contain most of the machinery which makes HDF5 useful. The File object does double duty as the
HDF5 root group, and serves as your entry point into the file:

>>> f = h5py.File('foo.hdf5','w')
>>> f.name
u'/'

4.2. Groups 15

http://api.h5py.org/h5f.html#h5py.h5f.FileID

h5py Documentation, Release 2.6.0

>>> f.keys()
[]

Names of all objects in the file are all text strings (unicode on Py2, str on Py3). These will be encoded with the
HDF5-approved UTF-8 encoding before being passed to the HDF5 C library. Objects may also be retrieved using byte
strings, which will be passed on to HDF5 as-is.

4.2.1 Creating groups

New groups are easy to create:

>>> grp = f.create_group("bar")
>>> grp.name
'/bar'
>>> subgrp = grp.create_group("baz")
>>> subgrp.name
'/bar/baz'

Multiple intermediate groups can also be created implicitly:

>>> grp2 = f.create_group("/some/long/path")
>>> grp2.name
'/some/long/path'
>>> grp3 = f['/some/long']
>>> grp3.name
'/some/long'

4.2.2 Dict interface and links

Groups implement a subset of the Python dictionary convention. They have methods like keys(), values() and
support iteration. Most importantly, they support the indexing syntax, and standard exceptions:

>>> myds = subgrp["MyDS"]
>>> missing = subgrp["missing"]
KeyError: "Name doesn't exist (Symbol table: Object not found)"

Objects can be deleted from the file using the standard syntax:

>>> del subgroup["MyDataset"]

Note: When using h5py from Python 3, the keys(), values() and items() methods will return view-like objects instead
of lists. These objects support containership testing and iteration, but can’t be sliced like lists.

Hard links

What happens when assigning an object to a name in the group? It depends on the type of object being assigned. For
NumPy arrays or other data, the default is to create an HDF5 datasets:

>>> grp["name"] = 42
>>> out = grp["name"]

16 Chapter 4. High-level API reference

h5py Documentation, Release 2.6.0

>>> out
<HDF5 dataset "name": shape (), type "<i8">

When the object being stored is an existing Group or Dataset, a new link is made to the object:

>>> grp["other name"] = out
>>> grp["other name"]
<HDF5 dataset "other name": shape (), type "<i8">

Note that this is not a copy of the dataset! Like hard links in a UNIX file system, objects in an HDF5 file can be stored
in multiple groups:

>>> f["other name"] == f["name"]
True

Soft links

Also like a UNIX filesystem, HDF5 groups can contain “soft” or symbolic links, which contain a text path instead of
a pointer to the object itself. You can easily create these in h5py by using h5py.SoftLink:

>>> myfile = h5py.File('foo.hdf5','w')
>>> group = myfile.create_group("somegroup")
>>> myfile["alias"] = h5py.SoftLink('/somegroup')

If the target is removed, they will “dangle”:

>>> del myfile['somegroup']
>>> print myfile['alias']
KeyError: 'Component not found (Symbol table: Object not found)'

External links

New in HDF5 1.8, external links are “soft links plus”, which allow you to specify the name of the file as well as the
path to the desired object. You can refer to objects in any file you wish. Use similar syntax as for soft links:

>>> myfile = h5py.File('foo.hdf5','w')
>>> myfile['ext link'] = h5py.ExternalLink("otherfile.hdf5", "/path/to/resource")

When the link is accessed, the file “otherfile.hdf5” is opened, and object at “/path/to/resource” is returned.

Since the object retrieved is in a different file, its “.file” and “.parent” properties will refer to objects in that file, not
the file in which the link resides.

Note: Currently, you can’t access an external link if the file it points to is already open. This is related to how HDF5
manages file permissions internally.

4.2.3 Reference

class Group(identifier)
Generally Group objects are created by opening objects in the file, or by the method Group.
create_group(). Call the constructor with a GroupID instance to create a new Group bound to an existing
low-level identifier.

4.2. Groups 17

http://api.h5py.org/h5g.html#h5py.h5g.GroupID

h5py Documentation, Release 2.6.0

__iter__()
Iterate over the names of objects directly attached to the group. Use Group.visit() or Group.
visititems() for recursive access to group members.

__contains__(name)
Dict-like containership testing. name may be a relative or absolute path.

__getitem__(name)
Retrieve an object. name may be a relative or absolute path, or an object or region reference. See Dict
interface and links.

__setitem__(name, value)
Create a new link, or automatically create a dataset. See Dict interface and links.

keys()
Get the names of directly attached group members. On Py2, this is a list. On Py3, it’s a set-like object.
Use Group.visit() or Group.visititems() for recursive access to group members.

values()
Get the objects contained in the group (Group and Dataset instances). Broken soft or external links show
up as None. On Py2, this is a list. On Py3, it’s a collection or bag-like object.

items()
Get (name, value) pairs for object directly attached to this group. Values for broken soft or external
links show up as None. On Py2, this is a list. On Py3, it’s a set-like object.

iterkeys()
(Py2 only) Get an iterator over key names. Exactly equivalent to iter(group). Use Group.visit()
or Group.visititems() for recursive access to group members.

itervalues()
(Py2 only) Get an iterator over objects attached to the group. Broken soft and external links will show up
as None.

iteritems()
(Py2 only) Get an iterator over (name, value) pairs for objects directly attached to the group. Broken
soft and external link values show up as None.

get(name, default=None, getclass=False, getlink=False)
Retrieve an item, or information about an item. name and default work like the standard Python dict.
get.

Parameters

• name – Name of the object to retrieve. May be a relative or absolute path.

• default – If the object isn’t found, return this instead.

• getclass – If True, return the class of object instead; Group or Dataset.

• getlink – If true, return the type of link via a HardLink, SoftLink or
ExternalLink instance. If getclass is also True, returns the corresponding Link
class without instantiating it.

visit(callable)
Recursively visit all objects in this group and subgroups. You supply a callable with the signature:

callable(name) -> None or return value

name will be the name of the object relative to the current group. Return None to continue visiting until all
objects are exhausted. Returning anything else will immediately stop visiting and return that value from
visit:

18 Chapter 4. High-level API reference

h5py Documentation, Release 2.6.0

>>> def find_foo(name):
... """ Find first object with 'foo' anywhere in the name """
... if 'foo' in name:
... return name
>>> group.visit(find_foo)
u'some/subgroup/foo'

visititems(callable)
Recursively visit all objects in this group and subgroups. Like Group.visit(), except your callable
should have the signature:

callable(name, object) -> None or return value

In this case object will be a Group or Dataset instance.

move(source, dest)
Move an object or link in the file. If source is a hard link, this effectively renames the object. If a soft or
external link, the link itself is moved.

Parameters

• source (String) – Name of object or link to move.

• dest (String) – New location for object or link.

copy(source, dest, name=None, shallow=False, expand_soft=False, expand_external=False, ex-
pand_refs=False, without_attrs=False)

Copy an object or group. The source and destination need not be in the same file. If the source is a Group
object, by default all objects within that group will be copied recursively.

Parameters

• source – What to copy. May be a path in the file or a Group/Dataset object.

• dest – Where to copy it. May be a path or Group object.

• name – If the destination is a Group object, use this for the name of the copied object
(default is basename).

• shallow – Only copy immediate members of a group.

• expand_soft – Expand soft links into new objects.

• expand_external – Expand external links into new objects.

• expand_refs – Copy objects which are pointed to by references.

• without_attrs – Copy object(s) without copying HDF5 attributes.

create_group(name)
Create and return a new group in the file.

Parameters name (String or None) – Name of group to create. May be an absolute or
relative path. Provide None to create an anonymous group, to be linked into the file later.

Returns The new Group object.

require_group(name)
Open a group in the file, creating it if it doesn’t exist. TypeError is raised if a conflicting object already
exists. Parameters as in Group.create_group().

create_dataset(name, shape=None, dtype=None, data=None, **kwds)
Create a new dataset. Options are explained in Creating datasets.

4.2. Groups 19

h5py Documentation, Release 2.6.0

Parameters

• name – Name of dataset to create. May be an absolute or relative path. Provide None to
create an anonymous dataset, to be linked into the file later.

• shape – Shape of new dataset (Tuple).

• dtype – Data type for new dataset

• data – Initialize dataset to this (NumPy array).

• chunks – Chunk shape, or True to enable auto-chunking.

• maxshape – Dataset will be resizable up to this shape (Tuple). Automatically enables
chunking. Use None for the axes you want to be unlimited.

• compression – Compression strategy. See Filter pipeline.

• compression_opts – Parameters for compression filter.

• scaleoffset – See Scale-Offset filter.

• shuffle – Enable shuffle filter (T/F). See Shuffle filter.

• fletcher32 – Enable Fletcher32 checksum (T/F). See Fletcher32 filter.

• fillvalue – This value will be used when reading uninitialized parts of the dataset.

• track_times – Enable dataset creation timestamps (T/F).

require_dataset(name, shape=None, dtype=None, exact=None, **kwds)
Open a dataset, creating it if it doesn’t exist.

If keyword “exact” is False (default), an existing dataset must have the same shape and a conversion-
compatible dtype to be returned. If True, the shape and dtype must match exactly.

Other dataset keywords (see create_dataset) may be provided, but are only used if a new dataset is to be
created.

Raises TypeError if an incompatible object already exists, or if the shape or dtype don’t match according
to the above rules.

Parameters exact – Require shape and type to match exactly (T/F)

attrs
Attributes for this group.

id
The groups’s low-level identifer; an instance of GroupID.

ref
An HDF5 object reference pointing to this group. See Using object references.

regionref
A proxy object allowing you to interrogate region references. See Using region references.

name
String giving the full path to this group.

file
File instance in which this group resides.

parent
Group instance containing this group.

20 Chapter 4. High-level API reference

http://api.h5py.org/h5g.html#h5py.h5g.GroupID

h5py Documentation, Release 2.6.0

4.2.4 Link classes

class HardLink
Exists only to support Group.get(). Has no state and provides no properties or methods.

class SoftLink(path)
Exists to allow creation of soft links in the file. See Soft links. These only serve as containers for a path; they
are not related in any way to a particular file.

Parameters path (String) – Value of the soft link.

path
Value of the soft link

class ExternalLink(filename, path)
Like SoftLink, only they specify a filename in addition to a path. See External links.

Parameters

• filename (String) – Name of the file to which the link points

• path (String) – Path to the object in the external file.

filename
Name of the external file

path
Path to the object in the external file

4.3 Datasets

Datasets are very similar to NumPy arrays. They are homogenous collections of data elements, with an immutable
datatype and (hyper)rectangular shape. Unlike NumPy arrays, they support a variety of transparent storage features
such as compression, error-detection, and chunked I/O.

They are represented in h5py by a thin proxy class which supports familiar NumPy operations like slicing, along with
a variety of descriptive attributes:

• shape attribute

• size attribute

• dtype attribute

4.3.1 Creating datasets

New datasets are created using either Group.create_dataset() or Group.require_dataset(). Existing
datasets should be retrieved using the group indexing syntax (dset = group["name"]).

To make an empty dataset, all you have to do is specify a name, shape, and optionally the data type (defaults to 'f'):

>>> dset = f.create_dataset("default", (100,))
>>> dset = f.create_dataset("ints", (100,), dtype='i8')

You may initialize the dataset to an existing NumPy array:

>>> arr = np.arange(100)
>>> dset = f.create_dataset("init", data=arr)

4.3. Datasets 21

h5py Documentation, Release 2.6.0

Keywords shape and dtype may be specified along with data; if so, they will override data.shape and data.
dtype. It’s required that (1) the total number of points in shape match the total number of points in data.shape,
and that (2) it’s possible to cast data.dtype to the requested dtype.

4.3.2 Chunked storage

An HDF5 dataset created with the default settings will be contiguous; in other words, laid out on disk in traditional C
order. Datasets may also be created using HDF5’s chunked storage layout. This means the dataset is divided up into
regularly-sized pieces which are stored haphazardly on disk, and indexed using a B-tree.

Chunked storage makes it possible to resize datasets, and because the data is stored in fixed-size chunks, to use
compression filters.

To enable chunked storage, set the keyword chunks to a tuple indicating the chunk shape:

>>> dset = f.create_dataset("chunked", (1000, 1000), chunks=(100, 100))

Data will be read and written in blocks with shape (100,100); for example, the data in dset[0:100,0:100] will
be stored together in the file, as will the data points in range dset[400:500, 100:200].

Chunking has performance implications. It’s recommended to keep the total size of your chunks between 10 KiB and
1 MiB, larger for larger datasets. Also keep in mind that when any element in a chunk is accessed, the entire chunk is
read from disk.

Since picking a chunk shape can be confusing, you can have h5py guess a chunk shape for you:

>>> dset = f.create_dataset("autochunk", (1000, 1000), chunks=True)

Auto-chunking is also enabled when using compression or maxshape, etc., if a chunk shape is not manually specified.

4.3.3 Resizable datasets

In HDF5, datasets can be resized once created up to a maximum size, by calling Dataset.resize(). You specify
this maximum size when creating the dataset, via the keyword maxshape:

>>> dset = f.create_dataset("resizable", (10,10), maxshape=(500, 20))

Any (or all) axes may also be marked as “unlimited”, in which case they may be increased up to the HDF5 per-axis
limit of 2**64 elements. Indicate these axes using None:

>>> dset = f.create_dataset("unlimited", (10, 10), maxshape=(None, 10))

Note: Resizing an array with existing data works differently than in NumPy; if any axis shrinks, the data in the
missing region is discarded. Data does not “rearrange” itself as it does when resizing a NumPy array.

4.3.4 Filter pipeline

Chunked data may be transformed by the HDF5 filter pipeline. The most common use is applying transparent com-
pression. Data is compressed on the way to disk, and automatically decompressed when read. Once the dataset is
created with a particular compression filter applied, data may be read and written as normal with no special steps
required.

Enable compression with the compression keyword to Group.create_dataset():

22 Chapter 4. High-level API reference

h5py Documentation, Release 2.6.0

>>> dset = f.create_dataset("zipped", (100, 100), compression="gzip")

Options for each filter may be specified with compression_opts:

>>> dset = f.create_dataset("zipped_max", (100, 100), compression="gzip", compression_
→˓opts=9)

Lossless compression filters

GZIP filter ("gzip") Available with every installation of HDF5, so it’s best where portability is required. Good
compression, moderate speed. compression_opts sets the compression level and may be an integer from 0
to 9, default is 4.

LZF filter ("lzf") Available with every installation of h5py (C source code also available). Low to moderate com-
pression, very fast. No options.

SZIP filter ("szip") Patent-encumbered filter used in the NASA community. Not available with all installations of
HDF5 due to legal reasons. Consult the HDF5 docs for filter options.

Custom compression filters

In addition to the compression filters listed above, compression filters can be dynamically loaded by the underlying
HDF5 library. This is done by passing a filter number to Group.create_dataset() as the compression
parameter. The compression_opts parameter will then be passed to this filter.

Note: The underlying implementation of the compression filter will have the H5Z_FLAG_OPTIONAL flag set. This
indicates that if the compression filter doesn’t compress a block while writing, no error will be thrown. The filter will
then be skipped when subsequently reading the block.

Scale-Offset filter

Filters enabled with the compression keywords are _lossless_; what comes out of the dataset is exactly what you
put in. HDF5 also includes a lossy filter which trades precision for storage space.

Works with integer and floating-point data only. Enable the scale-offset filter by setting Group.
create_dataset() keyword scaleoffset to an integer.

For integer data, this specifies the number of bits to retain. Set to 0 to have HDF5 automatically compute the number
of bits required for lossless compression of the chunk. For floating-point data, indicates the number of digits after the
decimal point to retain.

Shuffle filter

Block-oriented compressors like GZIP or LZF work better when presented with runs of similar values. Enabling the
shuffle filter rearranges the bytes in the chunk and may improve compression ratio. No significant speed penalty,
lossless.

Enable by setting Group.create_dataset() keyword shuffle to True.

4.3. Datasets 23

h5py Documentation, Release 2.6.0

Fletcher32 filter

Adds a checksum to each chunk to detect data corruption. Attempts to read corrupted chunks will fail with an error.
No significant speed penalty. Obviously shouldn’t be used with lossy compression filters.

Enable by setting Group.create_dataset() keyword fletcher32 to True.

4.3.5 Reading & writing data

HDF5 datasets re-use the NumPy slicing syntax to read and write to the file. Slice specifications are translated directly
to HDF5 “hyperslab” selections, and are a fast and efficient way to access data in the file. The following slicing
arguments are recognized:

• Indices: anything that can be converted to a Python long

• Slices (i.e. [:] or [0:10])

• Field names, in the case of compound data

• At most one Ellipsis (...) object

Here are a few examples (output omitted)

>>> dset = f.create_dataset("MyDataset", (10,10,10), 'f')
>>> dset[0,0,0]
>>> dset[0,2:10,1:9:3]
>>> dset[:,::2,5]
>>> dset[0]
>>> dset[1,5]
>>> dset[0,...]
>>> dset[...,6]

For compound data, you can specify multiple field names alongside the numeric slices:

>>> dset["FieldA"]
>>> dset[0,:,4:5, "FieldA", "FieldB"]
>>> dset[0, ..., "FieldC"]

To retrieve the contents of a scalar dataset, you can use the same syntax as in NumPy: result = dset[()]. In
other words, index into the dataset using an empty tuple.

For simple slicing, broadcasting is supported:

>>> dset[0,:,:] = np.arange(10) # Broadcasts to (10,10)

Broadcasting is implemented using repeated hyperslab selections, and is safe to use with very large target selections.
It is supported for the above “simple” (integer, slice and ellipsis) slicing only.

4.3.6 Fancy indexing

A subset of the NumPy fancy-indexing syntax is supported. Use this with caution, as the underlying HDF5 mechanisms
may have different performance than you expect.

For any axis, you can provide an explicit list of points you want; for a dataset with shape (10, 10):

>>> dset.shape
(10, 10)
>>> result = dset[0, [1,3,8]]

24 Chapter 4. High-level API reference

h5py Documentation, Release 2.6.0

>>> result.shape
(3,)
>>> result = dset[1:6, [5,8,9]]
>>> result.shape
(5, 3)

The following restrictions exist:

• List selections may not be empty

• Selection coordinates must be given in increasing order

• Duplicate selections are ignored

• Very long lists (> 1000 elements) may produce poor performance

NumPy boolean “mask” arrays can also be used to specify a selection. The result of this operation is a 1-D array with
elements arranged in the standard NumPy (C-style) order. Behind the scenes, this generates a laundry list of points to
select, so be careful when using it with large masks:

>>> arr = numpy.arange(100).reshape((10,10))
>>> dset = f.create_dataset("MyDataset", data=arr)
>>> result = dset[arr > 50]
>>> result.shape
(49,)

4.3.7 Length and iteration

As with NumPy arrays, the len() of a dataset is the length of the first axis, and iterating over a dataset iterates over
the first axis. However, modifications to the yielded data are not recorded in the file. Resizing a dataset while iterating
has undefined results.

On 32-bit platforms, len(dataset) will fail if the first axis is bigger than 2**32. It’s recommended to use
Dataset.len() for large datasets.

4.3.8 Reference

class Dataset(identifier)
Dataset objects are typically created via Group.create_dataset(), or by retrieving existing datasets from
a file. Call this constructor to create a new Dataset bound to an existing DatasetID identifier.

__getitem__(args)
NumPy-style slicing to retrieve data. See Reading & writing data.

__setitem__(args)
NumPy-style slicing to write data. See Reading & writing data.

read_direct(array, source_sel=None, dest_sel=None)
Read from an HDF5 dataset directly into a NumPy array, which can avoid making an intermediate copy as
happens with slicing. The destination array must be C-contiguous and writable, and must have a datatype
to which the source data may be cast. Data type conversion will be carried out on the fly by HDF5.

source_sel and dest_sel indicate the range of points in the dataset and destination array respectively. Use
the output of numpy.s_[args]:

4.3. Datasets 25

http://api.h5py.org/h5d.html#h5py.h5d.DatasetID

h5py Documentation, Release 2.6.0

>>> dset = f.create_dataset("dset", (100,), dtype='int64')
>>> arr = np.zeros((100,), dtype='int32')
>>> dset.read_direct(arr, np.s_[0:10], np.s_[50:60])

astype(dtype)
Return a context manager allowing you to read data as a particular type. Conversion is handled by HDF5
directly, on the fly:

>>> dset = f.create_dataset("bigint", (1000,), dtype='int64')
>>> with dset.astype('int16'):
... out = dset[:]
>>> out.dtype
dtype('int16')

resize(size, axis=None)
Change the shape of a dataset. size may be a tuple giving the new dataset shape, or an integer giving the
new length of the specified axis.

Datasets may be resized only up to Dataset.maxshape.

len()
Return the size of the first axis.

shape
NumPy-style shape tuple giving dataset dimensions.

dtype
NumPy dtype object giving the dataset’s type.

size
Integer giving the total number of elements in the dataset.

maxshape
NumPy-style shape tuple indicating the maxiumum dimensions up to which the dataset may be resized.
Axes with None are unlimited.

chunks
Tuple giving the chunk shape, or None if chunked storage is not used. See Chunked storage.

compression
String with the currently applied compression filter, or None if compression is not enabled for this dataset.
See Filter pipeline.

compression_opts
Options for the compression filter. See Filter pipeline.

scaleoffset
Setting for the HDF5 scale-offset filter (integer), or None if scale-offset compression is not used for this
dataset. See Scale-Offset filter.

shuffle
Whether the shuffle filter is applied (T/F). See Shuffle filter.

fletcher32
Whether Fletcher32 checksumming is enabled (T/F). See Fletcher32 filter.

fillvalue
Value used when reading uninitialized portions of the dataset, or None if no fill value has been defined, in
which case HDF5 will use a type-appropriate default value. Can’t be changed after the dataset is created.

26 Chapter 4. High-level API reference

h5py Documentation, Release 2.6.0

dims
Access to Dimension Scales.

attrs
Attributes for this dataset.

id
The dataset’s low-level identifer; an instance of DatasetID.

ref
An HDF5 object reference pointing to this dataset. See Using object references.

regionref
Proxy object for creating HDF5 region references. See Using region references.

name
String giving the full path to this dataset.

file
File instance in which this dataset resides

parent
Group instance containing this dataset.

4.4 Attributes

Attributes are a critical part of what makes HDF5 a “self-describing” format. They are small named pieces of data
attached directly to Group and Dataset objects. This is the official way to store metadata in HDF5.

Each Group or Dataset has a small proxy object attached to it, at <obj>.attrs. Attributes have the following
properties:

• They may be created from any scalar or NumPy array

• Each attribute should be small (generally < 64k)

• There is no partial I/O (i.e. slicing); the entire attribute must be read.

The .attrs proxy objects are of class AttributeManager, below. This class supports a dictionary-style inter-
face.

4.4.1 Reference

class AttributeManager(parent)
AttributeManager objects are created directly by h5py. You should access instances by group.attrs or
dataset.attrs, not by manually creating them.

__iter__()
Get an iterator over attribute names.

__contains__(name)
Determine if attribute name is attached to this object.

__getitem__(name)
Retrieve an attribute.

__setitem__(name, val)
Create an attribute, overwriting any existing attribute. The type and shape of the attribute are determined
automatically by h5py.

4.4. Attributes 27

http://api.h5py.org/h5d.html#h5py.h5d.DatasetID

h5py Documentation, Release 2.6.0

__delitem__(name)
Delete an attribute. KeyError if it doesn’t exist.

keys()
Get the names of all attributes attached to this object. On Py2, this is a list. On Py3, it’s a set-like object.

values()
Get the values of all attributes attached to this object. On Py2, this is a list. On Py3, it’s a collection or
bag-like object.

items()
Get (name, value) tuples for all attributes attached to this object. On Py2, this is a list of tuples. On
Py3, it’s a collection or set-like object.

iterkeys()
(Py2 only) Get an iterator over attribute names.

itervalues()
(Py2 only) Get an iterator over attribute values.

iteritems()
(Py2 only) Get an iterator over (name, value) pairs.

get(name, default=None)
Retrieve name, or default if no such attribute exists.

create(name, data, shape=None, dtype=None)
Create a new attribute, with control over the shape and type. Any existing attribute will be overwritten.

Parameters

• name (String) – Name of the new attribute

• data – Value of the attribute; will be put through numpy.array(data).

• shape (Tuple) – Shape of the attribute. Overrides data.shape if both are given, in
which case the total number of points must be unchanged.

• dtype (NumPy dtype) – Data type for the attribute. Overrides data.dtype if both
are given.

modify(name, value)
Change the value of an attribute while preserving its type and shape. Unlike AttributeManager.
__setitem__(), if the attribute already exists, only its value will be changed. This can be useful for
interacting with externally generated files, where the type and shape must not be altered.

If the attribute doesn’t exist, it will be created with a default shape and type.

Parameters

• name (String) – Name of attribute to modify.

• value – New value. Will be put through numpy.array(value).

4.5 Dimension Scales

Datasets are multidimensional arrays. HDF5 provides support for labeling the dimensions and associating one or
“dimension scales” with each dimension. A dimension scale is simply another HDF5 dataset. In principle, the length
of the multidimensional array along the dimension of interest should be equal to the length of the dimension scale, but
HDF5 does not enforce this property.

28 Chapter 4. High-level API reference

h5py Documentation, Release 2.6.0

The HDF5 library provides the H5DS API for working with dimension scales. H5py provides low-level bindings
to this API in h5py.h5ds. These low-level bindings are in turn used to provide a high-level interface through the
Dataset.dims property. Suppose we have the following data file:

f = File('foo.h5', 'w')
f['data'] = np.ones((4, 3, 2), 'f')

HDF5 allows the dimensions of data to be labeled, for example:

f['data'].dims[0].label = 'z'
f['data'].dims[2].label = 'x'

Note that the first dimension, which has a length of 4, has been labeled “z”, the third dimension (in this case the fastest
varying dimension), has been labeled “x”, and the second dimension was given no label at all.

We can also use HDF5 datasets as dimension scales. For example, if we have:

f['x1'] = [1, 2]
f['x2'] = [1, 1.1]
f['y1'] = [0, 1, 2]
f['z1'] = [0, 1, 4, 9]

We are going to treat the x1, x2, y1, and z1 datasets as dimension scales:

f['data'].dims.create_scale(f['x1'])
f['data'].dims.create_scale(f['x2'], 'x2 name')
f['data'].dims.create_scale(f['y1'], 'y1 name')
f['data'].dims.create_scale(f['z1'], 'z1 name')

When you create a dimension scale, you may provide a name for that scale. In this case, the x1 scale was not given a
name, but the others were. Now we can associate these dimension scales with the primary dataset:

f['data'].dims[0].attach_scale(f['z1'])
f['data'].dims[1].attach_scale(f['y1'])
f['data'].dims[2].attach_scale(f['x1'])
f['data'].dims[2].attach_scale(f['x2'])

Note that two dimension scales were associated with the third dimension of data. You can also detach a dimension
scale:

f['data'].dims[2].detach_scale(f['x2'])

but for now, lets assume that we have both x1 and x2 still associated with the third dimension of data. You can
attach a dimension scale to any number of HDF5 datasets, you can even attach it to multiple dimensions of a single
HDF5 dataset.

Now that the dimensions of data have been labeled, and the dimension scales for the various axes have been specified,
we have provided much more context with which data can be interpreted. For example, if you want to know the labels
for the various dimensions of data:

>>> [dim.label for dim in f['data'].dims]
['z', '', 'x']

If you want the names of the dimension scales associated with the “x” axis:

>>> f['data'].dims[2].keys()
['', 'x2 name']

4.5. Dimension Scales 29

h5py Documentation, Release 2.6.0

items() and values() methods are also provided. The dimension scales themselves can also be accessed with:

f['data'].dims[2][1]

or:

f['data'].dims[2]['x2 name']

such that:

>>> f['data'].dims[2][1] == f['x2']
True

though, beware that if you attempt to index the dimension scales with a string, the first dimension scale whose name
matches the string is the one that will be returned. There is no guarantee that the name of the dimension scale is
unique.

30 Chapter 4. High-level API reference

CHAPTER 5

Advanced topics

5.1 Configuring h5py

5.1.1 Library configuration

A few library options are available to change the behavior of the library. You can get a reference to the global library
configuration object via the function h5py.get_config(). This object supports the following attributes:

complex_names Set to a 2-tuple of strings (real, imag) to control how complex numbers are saved. The
default is (‘r’,’i’).

bool_names Booleans are saved as HDF5 enums. Set this to a 2-tuple of strings (false, true) to control
the names used in the enum. The default is (“FALSE”, “TRUE”).

5.1.2 IPython

H5py ships with a custom ipython completer, which provides object introspection and tab completion for h5py objects
in an ipython session. For example, if a file contains 3 groups, “foo”, “bar”, and “baz”:

In [4]: f['b<TAB>
bar baz

In [4]: f['f<TAB>
Completes to:
In [4]: f['foo'

In [4]: f['foo'].<TAB>
f['foo'].attrs f['foo'].items f['foo'].ref
f['foo'].copy f['foo'].iteritems f['foo'].require_dataset
f['foo'].create_dataset f['foo'].iterkeys f['foo'].require_group
f['foo'].create_group f['foo'].itervalues f['foo'].values
f['foo'].file f['foo'].keys f['foo'].visit

31

h5py Documentation, Release 2.6.0

f['foo'].get f['foo'].name f['foo'].visititems
f['foo'].id f['foo'].parent

The easiest way to enable the custom completer is to do the following in an IPython session:

In [1]: import h5py

In [2]: h5py.enable_ipython_completer()

It is also possible to configure IPython to enable the completer every time you start a new session. For >=ipython-
0.11, “h5py.ipy_completer” just needs to be added to the list of extensions in your ipython config file, for example
~/.config/ipython/profile_default/ipython_config.py (if this file does not exist, you can create
it by invoking ipython profile create):

c = get_config()
c.InteractiveShellApp.extensions = ['h5py.ipy_completer']

For <ipython-0.11, the completer can be enabled by adding the following lines to the main() in .ipython/
ipy_user_conf.py:

def main():
ip.ex('from h5py import ipy_completer')
ip.ex('ipy_completer.load_ipython_extension()')

5.2 Special types

HDF5 supports a few types which have no direct NumPy equivalent. Among the most useful and widely used are
variable-length (VL) types, and enumerated types. As of version 2.3, h5py fully supports HDF5 enums and VL types.

5.2.1 How special types are represented

Since there is no direct NumPy dtype for variable-length strings, enums or references, h5py extends the dtype system
slightly to let HDF5 know how to store these types. Each type is represented by a native NumPy dtype, with a small
amount of metadata attached. NumPy routines ignore the metadata, but h5py can use it to determine how to store the
data.

There are two functions for creating these “hinted” dtypes:

special_dtype(**kwds)
Create a NumPy dtype object containing type hints. Only one keyword may be specified.

Parameters

• vlen – Base type for HDF5 variable-length datatype.

• enum – 2-tuple (basetype, values_dict). basetype must be an integer dtype;
values_dict is a dictionary mapping string names to integer values.

• ref – Provide class h5py.Reference or h5py.RegionReference to create a type
representing object or region references respectively.

check_dtype(**kwds)
Determine if the given dtype object is a special type. Example:

32 Chapter 5. Advanced topics

h5py Documentation, Release 2.6.0

>>> out = h5py.check_dtype(vlen=mydtype)
>>> if out is not None:
... print "Vlen of type %s" % out
str

Parameters

• vlen – Check for an HDF5 variable-length type; returns base class

• enum – Check for an enumerated type; returns 2-tuple (basetype, values_dict).

• ref – Check for an HDF5 object or region reference; returns either h5py.Reference or
h5py.RegionReference.

5.2.2 Variable-length strings

In HDF5, data in VL format is stored as arbitrary-length vectors of a base type. In particular, strings are stored C-style
in null-terminated buffers. NumPy has no native mechanism to support this. Unfortunately, this is the de facto standard
for representing strings in the HDF5 C API, and in many HDF5 applications.

Thankfully, NumPy has a generic pointer type in the form of the “object” (“O”) dtype. In h5py, variable-length strings
are mapped to object arrays. A small amount of metadata attached to an “O” dtype tells h5py that its contents should
be converted to VL strings when stored in the file.

Existing VL strings can be read and written to with no additional effort; Python strings and fixed-length NumPy strings
can be auto-converted to VL data and stored.

Here’s an example showing how to create a VL array of strings:

>>> f = h5py.File('foo.hdf5')
>>> dt = h5py.special_dtype(vlen=str)
>>> ds = f.create_dataset('VLDS', (100,100), dtype=dt)
>>> ds.dtype.kind
'O'
>>> h5py.check_dtype(vlen=ds.dtype)
<type 'str'>

5.2.3 Arbitrary vlen data

Starting with h5py 2.3, variable-length types are not restricted to strings. For example, you can create a “ragged” array
of integers:

>>> dt = h5py.special_dtype(vlen=np.dtype('int32'))
>>> dset = f.create_dataset('vlen_int', (100,), dtype=dt)
>>> dset[0] = [1,2,3]
>>> dset[1] = [1,2,3,4,5]

Single elements are read as NumPy arrays:

>>> dset[0]
array([1, 2, 3], dtype=int32)

Multidimensional selections produce an object array whose members are integer arrays:

>>> dset[0:2]
array([array([1, 2, 3], dtype=int32), array([1, 2, 3, 4, 5], dtype=int32)],
→˓dtype=object)

5.2. Special types 33

h5py Documentation, Release 2.6.0

5.2.4 Enumerated types

HDF5 has the concept of an enumerated type, which is an integer datatype with a restriction to certain named values.
Since NumPy has no such datatype, HDF5 ENUM types are read and written as integers.

Here’s an example of creating an enumerated type:

>>> dt = h5py.special_dtype(enum=('i', {"RED": 0, "GREEN": 1, "BLUE": 42}))
>>> h5py.check_dtype(enum=dt)
{'BLUE': 42, 'GREEN': 1, 'RED': 0}
>>> f = h5py.File('foo.hdf5','w')
>>> ds = f.create_dataset("EnumDS", (100,100), dtype=dt)
>>> ds.dtype.kind
'i'
>>> ds[0,:] = 42
>>> ds[0,0]
42
>>> ds[1,0]
0

5.2.5 Object and region references

References have their own section.

5.3 Strings in HDF5

5.3.1 The Most Important Thing

If you remember nothing else, remember this:

All strings in HDF5 hold encoded text.

You can’t store arbitrary binary data in HDF5 strings. Not only will this break, it will break in odd, hard-to-discover
ways that will leave you confused and cursing.

5.3.2 How to store raw binary data

If you have a non-text blob in a Python byte string (as opposed to ASCII or UTF-8 encoded text, which is fine), you
should wrap it in a void type for storage. This will map to the HDF5 OPAQUE datatype, and will prevent your blob
from getting mangled by the string machinery.

Here’s an example of how to store binary data in an attribute, and then recover it:

>>> binary_blob = b"Hello\x00Hello\x00"
>>> dset.attrs["attribute_name"] = np.void(binary_blob)
>>> out = dset.attrs["attribute_name"]
>>> binary_blob = out.tostring()

34 Chapter 5. Advanced topics

h5py Documentation, Release 2.6.0

5.3.3 How to store text strings

At the high-level interface, h5py exposes three kinds of strings. Each maps to a specific type within Python (but see
str_py3 below):

• Fixed-length ASCII (NumPy S type)

• Variable-length ASCII (Python 2 str, Python 3 bytes)

• Variable-length UTF-8 (Python 2 unicode, Python 3 str)

Compatibility

If you want to write maximally-compatible files and don’t want to read the whole chapter:

• Use numpy.string_ for scalar attributes

• Use the NumPy S dtype for datasets and array attributes

Fixed-length ASCII

These are created when you use numpy.string_:

>>> dset.attrs["name"] = numpy.string_("Hello")

or the S dtype:

>>> dset = f.create_dataset("string_ds", (100,), dtype="S10")

In the file, these map to fixed-width ASCII strings. One byte per character is used. The representation is “null-padded”,
which is the internal representation used by NumPy (and the only one which round-trips through HDF5).

Technically, these strings are supposed to store only ASCII-encoded text, although in practice anything you can store
in NumPy will round-trip. But for compatibility with other progams using HDF5 (IDL, MATLAB, etc.), you should
use ASCII only.

Note: This is the most-compatible way to store a string. Everything else can read it.

Variable-length ASCII

These are created when you assign a byte string to an attribute:

>>> dset.attrs["attr"] = b"Hello"

or when you create a dataset with an explicit “bytes” vlen type:

>>> dt = h5py.special_dtype(vlen=bytes)
>>> dset = f.create_dataset("name", (100,), dtype=dt)

Note that they’re not fully identical to Python byte strings. You can only store ASCII-encoded text, without NULL
bytes:

>>> dset.attrs["name"] = b"Hello\x00there"
ValueError: VLEN strings do not support embedded NULLs

5.3. Strings in HDF5 35

h5py Documentation, Release 2.6.0

In the file, these are created as variable-length strings with character set H5T_CSET_ASCII.

Variable-length UTF-8

These are created when you assign a unicode string to an attribute:

>>> dset.attrs["name"] = u"Hello"

or if you create a dataset with an explicit unicode vlen type:

>>> dt = h5py.special_dtype(vlen=unicode)
>>> dset = f.create_dataset("name", (100,), dtype=dt)

They can store any character a Python unicode string can store, with the exception of NULLs. In the file these are
created as variable-length strings with character set H5T_CSET_UTF8.

Exceptions for Python 3

Most strings in the HDF5 world are stored in ASCII, which means they map to byte strings. But in Python 3, there’s a
strict separation between data and text, which intentionally makes it painful to handle encoded strings directly.

So, when reading or writing scalar string attributes, on Python 3 they will always be returned as type str, regardless
of the underlying storage mechanism. The regular rules for writing apply; to get a fixed-width ASCII string, use
numpy.string_, and to get a variable-length ASCII string, use bytes.

What about NumPy’s U type?

NumPy also has a Unicode type, a UTF-32 fixed-width format (4-byte characters). HDF5 has no support for wide
characters. Rather than trying to hack around this and “pretend” to support it, h5py will raise an error when attempting
to create datasets or attributes of this type.

5.3.4 Object names

Unicode strings are used exclusively for object names in the file:

>>> f.name
u'/'

You can supply either byte or unicode strings (on both Python 2 and Python 3) when creating or retrieving objects. If
a byte string is supplied, it will be used as-is; Unicode strings will be encoded down to UTF-8.

In the file, h5py uses the most-compatible representation; H5T_CSET_ASCII for characters in the ASCII range;
H5T_CSET_UTF8 otherwise.

>>> grp = f.create_dataset(b"name")
>>> grp2 = f.create_dataset(u"name2")

5.4 Object and Region References

In addition to soft and external links, HDF5 supplies one more mechanism to refer to objects and data in a file. HDF5
references are low-level pointers to other objects. The great advantage of references is that they can be stored and
retrieved as data; you can create an attribute or an entire dataset of reference type.

36 Chapter 5. Advanced topics

h5py Documentation, Release 2.6.0

References come in two flavors, object references and region references. As the name suggests, object references point
to a particular object in a file, either a dataset, group or named datatype. Region references always point to a dataset,
and additionally contain information about a certain selection (dataset region) on that dataset. For example, if you
have a dataset representing an image, you could specify a region of interest, and store it as an attribute on the dataset.

5.4.1 Using object references

It’s trivial to create a new object reference; every high-level object in h5py has a read-only property “ref”, which when
accessed returns a new object reference:

>>> myfile = h5py.File('myfile.hdf5')
>>> mygroup = myfile['/some/group']
>>> ref = mygroup.ref
>>> print ref
<HDF5 object reference>

“Dereferencing” these objects is straightforward; use the same syntax as when opening any other object:

>>> mygroup2 = myfile[ref]
>>> print mygroup2
<HDF5 group "/some/group" (0 members)>

5.4.2 Using region references

Region references always contain a selection. You create them using the dataset property “regionref” and standard
NumPy slicing syntax:

>>> myds = myfile.create_dataset('dset', (200,200))
>>> regref = myds.regionref[0:10, 0:5]
>>> print regref
<HDF5 region reference>

The reference itself can now be used in place of slicing arguments to the dataset:

>>> subset = myds[regref]

There is one complication; since HDF5 region references don’t express shapes the same way as NumPy does, the data
returned will be “flattened” into a 1-D array:

>>> subset.shape
(50,)

This is similar to the behavior of NumPy’s fancy indexing, which returns a 1D array for selections which don’t conform
to a regular grid.

In addition to storing a selection, region references inherit from object references, and can be used anywhere an object
reference is accepted. In this case the object they point to is the dataset used to create them.

5.4.3 Storing references in a dataset

HDF5 treats object and region references as data. Consequently, there is a special HDF5 type to represent them.
However, NumPy has no equivalent type. Rather than implement a special “reference type” for NumPy, references are
handled at the Python layer as plain, ordinary python objects. To NumPy they are represented with the “object” dtype

5.4. Object and Region References 37

h5py Documentation, Release 2.6.0

(kind ‘O’). A small amount of metadata attached to the dtype tells h5py to interpret the data as containing reference
objects.

H5py contains a convenience function to create these “hinted dtypes” for you:

>>> ref_dtype = h5py.special_dtype(ref=h5py.Reference)
>>> type(ref_dtype)
<type 'numpy.dtype'>
>>> ref_dtype.kind
'O'

The types accepted by this “ref=” keyword argument are h5py.Reference (for object references) and
h5py.RegionReference (for region references).

To create an array of references, use this dtype as you normally would:

>>> ref_dataset = myfile.create_dataset("MyRefs", (100,), dtype=ref_dtype)

You can read from and write to the array as normal:

>>> ref_dataset[0] = myfile.ref
>>> print ref_dataset[0]
<HDF5 object reference>

5.4.4 Storing references in an attribute

Simply assign the reference to a name; h5py will figure it out and store it with the correct type:

>>> myref = myfile.ref
>>> myfile.attrs["Root group reference"] = myref

5.4.5 Null references

When you create a dataset of reference type, the uninitialized elements are “null” references. H5py uses the truth value
of a reference object to indicate whether or not it is null:

>>> print bool(myfile.ref)
True
>>> nullref = ref_dataset[50]
>>> print bool(nullref)
False

5.5 Parallel HDF5

Starting with version 2.2.0, h5py includes support for Parallel HDF5. This is the “native” way to use HDF5 in a
parallel computing environment.

5.5.1 How does Parallel HDF5 work?

Parallel HDF5 is a configuration of the HDF5 library which lets you share open files across multiple parallel processes.
It uses the MPI (Message Passing Interface) standard for interprocess communication. Consequently, when using
Parallel HDF5 from Python, your application will also have to use the MPI library.

38 Chapter 5. Advanced topics

h5py Documentation, Release 2.6.0

This is accomplished through the mpi4py Python package, which provides excellent, complete Python bindings for
MPI. Here’s an example “Hello World” using mpi4py:

>>> from mpi4py import MPI
>>> print "Hello World (from process %d)" % MPI.COMM_WORLD.Get_rank()

To run an MPI-based parallel program, use the mpiexec program to launch several parallel instances of Python:

$ mpiexec -n 4 python demo.py
Hello World (from process 1)
Hello World (from process 2)
Hello World (from process 3)
Hello World (from process 0)

The mpi4py package includes all kinds of mechanisms to share data between processes, synchronize, etc. It’s a
different flavor of parallelism than, say, threads or multiprocessing, but easy to get used to.

Check out the mpi4py web site for more information and a great tutorial.

5.5.2 Building against Parallel HDF5

HDF5 must be built with at least the following options:

$./configure --enable-parallel --enable-shared

Note that --enable-shared is required.

Often, a “parallel” version of HDF5 will be available through your package manager. You can check to see what build
options were used by using the program h5cc:

$ h5cc -showconfig

Once you’ve got a Parallel-enabled build of HDF5, h5py has to be compiled in “MPI mode”. This is simple; set your
default compiler to the mpicc wrapper and build h5py with the --mpi option:

$ export CC=mpicc
$ python setup.py configure --mpi [--hdf5=/path/to/parallel/hdf5]
$ python setup.py build

5.5.3 Using Parallel HDF5 from h5py

The parallel features of HDF5 are mostly transparent. To open a file shared across multiple processes, use the mpio
file driver. Here’s an example program which opens a file, creates a single dataset and fills it with the process ID:

from mpi4py import MPI
import h5py

rank = MPI.COMM_WORLD.rank # The process ID (integer 0-3 for 4-process run)

f = h5py.File('parallel_test.hdf5', 'w', driver='mpio', comm=MPI.COMM_WORLD)

dset = f.create_dataset('test', (4,), dtype='i')
dset[rank] = rank

f.close()

5.5. Parallel HDF5 39

http://mpi4py.scipy.org/
http://mpi4py.scipy.org/

h5py Documentation, Release 2.6.0

Run the program:

$ mpiexec -n 4 python demo2.py

Looking at the file with h5dump:

$ h5dump parallel_test.hdf5
HDF5 "parallel_test.hdf5" {
GROUP "/" {

DATASET "test" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (4) / (4) }
DATA {
(0): 0, 1, 2, 3
}

}
}
}

5.5.4 Collective versus independent operations

MPI-based programs work by launching many instances of the Python interpreter, each of which runs your script.
There are certain requirements imposed on what each process can do. Certain operations in HDF5, for example,
anything which modifies the file metadata, must be performed by all processes. Other operations, for example, writing
data to a dataset, can be performed by some processes and not others.

These two classes are called collective and independent operations. Anything which modifies the structure or metadata
of a file must be done collectively. For example, when creating a group, each process must participate:

>>> grp = f.create_group('x') # right

>>> if rank == 1:
... grp = f.create_group('x') # wrong; all processes must do this

On the other hand, writing data to a dataset can be done independently:

>>> if rank > 2:
... dset[rank] = 42 # this is fine

5.5.5 MPI atomic mode

HDF5 versions 1.8.9+ support the MPI “atomic” file access mode, which trades speed for more stringent consistency
requirements. Once you’ve opened a file with the mpio driver, you can place it in atomic mode using the settable
atomic property:

>>> f = h5py.File('parallel_test.hdf5', 'w', driver='mpio', comm=MPI.COMM_WORLD)
>>> f.atomic = True

5.5.6 More information

Parallel HDF5 is a new feature in h5py. If you have any questions, feel free to ask on the mailing list (h5py at google
groups). We welcome bug reports, enhancements and general inquiries.

40 Chapter 5. Advanced topics

h5py Documentation, Release 2.6.0

5.6 Single Writer Multiple Reader (SWMR)

Starting with version 2.5.0, h5py includes support for the HDF5 SWMR features.

The SWMR feature is not available in the current release (1.8 series) of HDF5 library. It is planned to be released for
production use in version 1.10. Until then it is available as an experimental prototype form from development snapshot
version 1.9.178 on the HDF Group ftp server or the HDF Group svn repository.

Warning: The SWMR feature is currently in prototype form and available for experimenting and testing. Please
do not consider this a production quality feature until the HDF5 library is released as 1.10.

Warning: FILES PRODUCED BY THE HDF5 1.9.X DEVELOPMENT SNAPSHOTS MAY NOT BE READ-
ABLE BY OTHER VERSIONS OF HDF5, INCLUDING THE EXISTING 1.8 SERIES AND ALSO 1.10 WHEN
IT IS RELEASED.

5.6.1 What is SWMR?

The SWMR features allow simple concurrent reading of a HDF5 file while it is being written from another process.
Prior to this feature addition it was not possible to do this as the file data and meta-data would not be syncrhonised and
attempts to read a file which was open for writing would fail or result in garbage data.

A file which is being written to in SWMR mode is guaranteed to always be in a valid (non-corrupt) state for reading.
This has the added benefit of leaving a file in a valid state even if the writing application crashes before closing the file
properly.

This feature has been implemented to work with independent writer and reader processes. No synchronisation is
required between processes and it is up to the user to implement either a file polling mechanism, inotify or any other
IPC mechanism to notify when data has been written.

The SWMR functionality requires use of the latest HDF5 file format: v110. In practice this implies setting the libver
bounding to “latest” when opening or creating the file.

Warning: New v110 format files are not compatible with v18 format. So files, written in SWMR mode with
libver=’latest’ cannot be opened with older versions of the HDF5 library (basically any version older than the
SWMR feature).

The HDF Group has documented the SWMR features in details on the website: Single-Writer/Multiple-Reader
(SWMR) Documentation. This is highly recommended reading for anyone intending to use the SWMR feature even
through h5py. For production systems in particular pay attention to the file system requirements regarding POSIX I/O
semantics.

5.6.2 Using the SWMR feature from h5py

The following basic steps are typically required by writer and reader processes:

• Writer process create the target file and all groups, datasets and attributes.

• Writer process switch file into SWMR mode.

• Reader process can open the file with swmr=True.

5.6. Single Writer Multiple Reader (SWMR) 41

ftp://ftp.hdfgroup.uiuc.edu/pub/outgoing/SWMR/
http://svn.hdfgroup.uiuc.edu/hdf5/branches/revise_chunks
http://www.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesSwmrDocs.html
http://www.hdfgroup.org/HDF5/docNewFeatures/NewFeaturesSwmrDocs.html

h5py Documentation, Release 2.6.0

• Writer writes and/or appends data to existing datasets (new groups and datasets cannot be created when in
SWMR mode).

• Writer regularly flushes the target dataset to make it visible to reader processes.

• Reader refreshes target dataset before reading new meta-data and/or main data.

• Writer eventually completes and close the file as normal.

• Reader can finish and close file as normal whenever it is convenient.

The following snippet demonstrate a SWMR writer appending to a single dataset:

f = h5py.File("swmr.h5", 'w', libver='latest')
arr = np.array([1,2,3,4])
dset = f.create_dataset("data", chunks=(2,), maxshape=(None,), data=arr)
f.swmr_mode = True
Now it is safe for the reader to open the swmr.h5 file
for i in range(5):

new_shape = ((i+1) * len(arr),)
dset.resize(new_shape)
dset[i*len(arr):] = arr
dset.flush()
Notify the reader process that new data has been written

The following snippet demonstrate how to monitor a dataset as a SWMR reader:

f = h5py.File("swmr.h5", 'r', libver='latest', swmr=True)
dset = f["data"]
while True:

dset.id.refresh()
shape = dset.shape
print(shape)

5.6.3 Examples

In addition to the above example snippets, a few more complete examples can be found in the examples folder. These
examples are described in the following sections

Dataset monitor with inotify

The inotify example demonstrate how to use SWMR in a reading application which monitors live progress as a dataset
is being written by another process. This example uses the the linux inotify (pyinotify python bindings) to receive a
signal each time the target file has been updated.

"""
Demonstrate the use of h5py in SWMR mode to monitor the growth of a dataset
on nofication of file modifications.

This demo uses pyinotify as a wrapper of Linux inotify.
https://pypi.python.org/pypi/pyinotify

Usage:
swmr_inotify_example.py [FILENAME [DATASETNAME]]

FILENAME: name of file to monitor. Default: swmr.h5

42 Chapter 5. Advanced topics

https://pypi.python.org/pypi/pyinotify

h5py Documentation, Release 2.6.0

DATASETNAME: name of dataset to monitor in DATAFILE. Default: data

This script will open the file in SWMR mode and monitor the shape of the
dataset on every write event (from inotify). If another application is
concurrently writing data to the file, the writer must have have switched
the file into SWMR mode before this script can open the file.

"""
import asyncore
import pyinotify
import sys
import h5py
import logging

#assert h5py.version.hdf5_version_tuple >= (1,9,178), "SWMR requires HDF5 version >=
→˓1.9.178"

class EventHandler(pyinotify.ProcessEvent):

def monitor_dataset(self, filename, datasetname):
logging.info("Opening file %s", filename)
self.f = h5py.File(filename, 'r', libver='latest', swmr=True)
logging.debug("Looking up dataset %s"%datasetname)
self.dset = self.f[datasetname]

self.get_dset_shape()

def get_dset_shape(self):
logging.debug("Refreshing dataset")
self.dset.refresh()

logging.debug("Getting shape")
shape = self.dset.shape
logging.info("Read data shape: %s"%str(shape))
return shape

def read_dataset(self, latest):
logging.info("Reading out dataset [%d]"%latest)
self.dset[latest:]

def process_IN_MODIFY(self, event):
logging.debug("File modified!")
shape = self.get_dset_shape()
self.read_dataset(shape[0])

def process_IN_CLOSE_WRITE(self, event):
logging.info("File writer closed file")
self.get_dset_shape()
logging.debug("Good bye!")
sys.exit(0)

if __name__ == "__main__":
logging.basicConfig(format='%(asctime)s %(levelname)s\t%(message)s',

→˓level=logging.INFO)

file_name = "swmr.h5"
if len(sys.argv) > 1:

file_name = sys.argv[1]

5.6. Single Writer Multiple Reader (SWMR) 43

h5py Documentation, Release 2.6.0

dataset_name = "data"
if len(sys.argv) > 2:

dataset_name = sys.argv[2]

wm = pyinotify.WatchManager() # Watch Manager
mask = pyinotify.IN_MODIFY | pyinotify.IN_CLOSE_WRITE
evh = EventHandler()
evh.monitor_dataset(file_name, dataset_name)

notifier = pyinotify.AsyncNotifier(wm, evh)
wdd = wm.add_watch(file_name, mask, rec=False)

Sit in this loop() until the file writer closes the file
or the user hits ctrl-c
asyncore.loop()

Multiprocess concurrent write and read

The SWMR multiprocess example starts starts two concurrent child processes: a writer and a reader. The writer
process first creates the target file and dataset. Then it switches the file into SWMR mode and the reader process is
notified (with a multiprocessing.Event) that it is safe to open the file for reading.

The writer process then continue to append chunks to the dataset. After each write it notifies the reader that new data
has been written. Whether the new data is visible in the file at this point is subject to OS and file system latencies.

The reader first waits for the initial “SWMR mode” notification from the writer, upon which it goes into a loop where
it waits for further notifications from the writer. The reader may drop some notifications, but for each one received it
will refresh the dataset and read the dimensions. After a time-out it will drop out of the loop and exit.

"""
Demonstrate the use of h5py in SWMR mode to write to a dataset (appending)
from one process while monitoring the growing dataset from another process.

Usage:
swmr_multiprocess.py [FILENAME [DATASETNAME]]

FILENAME: name of file to monitor. Default: swmrmp.h5
DATASETNAME: name of dataset to monitor in DATAFILE. Default: data

This script will start up two processes: a writer and a reader. The writer
will open/create the file (FILENAME) in SWMR mode, create a dataset and start
appending data to it. After each append the dataset is flushed and an event
sent to the reader process. Meanwhile the reader process will wait for events
from the writer and when triggered it will refresh the dataset and read the
current shape of it.

"""

import sys, time
import h5py
import numpy as np
import logging
from multiprocessing import Process, Event

class SwmrReader(Process):
def __init__(self, event, fname, dsetname, timeout = 2.0):

44 Chapter 5. Advanced topics

h5py Documentation, Release 2.6.0

super(SwmrReader, self).__init__()
self._event = event
self._fname = fname
self._dsetname = dsetname
self._timeout = timeout

def run(self):
self.log = logging.getLogger('reader')
self.log.info("Waiting for initial event")
assert self._event.wait(self._timeout)
self._event.clear()

self.log.info("Opening file %s", self._fname)
f = h5py.File(self._fname, 'r', libver='latest', swmr=True)
assert f.swmr_mode
dset = f[self._dsetname]
try:

monitor and read loop
while self._event.wait(self._timeout):

self._event.clear()
self.log.debug("Refreshing dataset")
dset.refresh()

shape = dset.shape
self.log.info("Read dset shape: %s"%str(shape))

finally:
f.close()

class SwmrWriter(Process):
def __init__(self, event, fname, dsetname):

super(SwmrWriter, self).__init__()
self._event = event
self._fname = fname
self._dsetname = dsetname

def run(self):
self.log = logging.getLogger('writer')
self.log.info("Creating file %s", self._fname)
f = h5py.File(self._fname, 'w', libver='latest')
try:

arr = np.array([1,2,3,4])
dset = f.create_dataset(self._dsetname, chunks=(2,), maxshape=(None,),

→˓data=arr)
assert not f.swmr_mode

self.log.info("SWMR mode")
f.swmr_mode = True
assert f.swmr_mode
self.log.debug("Sending initial event")
self._event.set()

Write loop
for i in range(5):

new_shape = ((i+1) * len(arr),)
self.log.info("Resizing dset shape: %s"%str(new_shape))
dset.resize(new_shape)
self.log.debug("Writing data")
dset[i*len(arr):] = arr

5.6. Single Writer Multiple Reader (SWMR) 45

h5py Documentation, Release 2.6.0

#dset.write_direct(arr, np.s_[:], np.s_[i*len(arr):])
self.log.debug("Flushing data")
dset.flush()
self.log.info("Sending event")
self._event.set()

finally:
f.close()

if __name__ == "__main__":
logging.basicConfig(format='%(levelname)10s %(asctime)s %(name)10s %(message)s

→˓',level=logging.INFO)
fname = 'swmrmp.h5'
dsetname = 'data'
if len(sys.argv) > 1:

fname = sys.argv[1]
if len(sys.argv) > 2:

dsetname = sys.argv[2]

event = Event()
reader = SwmrReader(event, fname, dsetname)
writer = SwmrWriter(event, fname, dsetname)

logging.info("Starting reader")
reader.start()
logging.info("Starting reader")
writer.start()

logging.info("Waiting for writer to finish")
writer.join()
logging.info("Waiting for reader to finish")
reader.join()

The example output below (from a virtual Ubuntu machine) illustrate some latency between the writer and reader:

python examples/swmr_multiprocess.py
INFO 2015-02-26 18:05:03,195 root Starting reader
INFO 2015-02-26 18:05:03,196 root Starting reader
INFO 2015-02-26 18:05:03,197 reader Waiting for initial event
INFO 2015-02-26 18:05:03,197 root Waiting for writer to finish
INFO 2015-02-26 18:05:03,198 writer Creating file swmrmp.h5
INFO 2015-02-26 18:05:03,203 writer SWMR mode
INFO 2015-02-26 18:05:03,205 reader Opening file swmrmp.h5
INFO 2015-02-26 18:05:03,210 writer Resizing dset shape: (4,)
INFO 2015-02-26 18:05:03,212 writer Sending event
INFO 2015-02-26 18:05:03,213 reader Read dset shape: (4,)
INFO 2015-02-26 18:05:03,214 writer Resizing dset shape: (8,)
INFO 2015-02-26 18:05:03,214 writer Sending event
INFO 2015-02-26 18:05:03,215 writer Resizing dset shape: (12,)
INFO 2015-02-26 18:05:03,215 writer Sending event
INFO 2015-02-26 18:05:03,215 writer Resizing dset shape: (16,)
INFO 2015-02-26 18:05:03,215 reader Read dset shape: (12,)
INFO 2015-02-26 18:05:03,216 writer Sending event
INFO 2015-02-26 18:05:03,216 writer Resizing dset shape: (20,)
INFO 2015-02-26 18:05:03,216 reader Read dset shape: (16,)
INFO 2015-02-26 18:05:03,217 writer Sending event

46 Chapter 5. Advanced topics

h5py Documentation, Release 2.6.0

INFO 2015-02-26 18:05:03,217 reader Read dset shape: (20,)
INFO 2015-02-26 18:05:03,218 reader Read dset shape: (20,)
INFO 2015-02-26 18:05:03,219 root Waiting for reader to finish

5.6. Single Writer Multiple Reader (SWMR) 47

h5py Documentation, Release 2.6.0

48 Chapter 5. Advanced topics

CHAPTER 6

Meta-info about the h5py project

6.1 “What’s new” documents

These document the changes between minor (or major) versions of h5py.

6.1.1 What’s new in h5py 2.4

Build system changes

The setup.py-based build system has been reworked to be more maintainable, and to fix certain long-standing bugs.
As a consequence, the options to setup.py have changed; a new top-level “configure” command handles options like
--hdf5=/path/to/hdf5 and --mpi. Setup.py now works correctly under Python 3 when these options are used.

Cython (0.17+) is now required when building from source on all platforms; the .c files are no longer shipped in the
UNIX release. The minimum NumPy version is now 1.6.1.

Files will now auto-close

Files are now automatically closed when all objects within them are unreachable. Previously, if File.close() was not
explicitly called, files would remain open and “leaks” were possible if the File object was lost.

Thread safety improvements

Access to all APIs, high- and low-level, are now protected by a global lock. The entire API is now believed to be
thread-safe. Feedback and real-world testing is welcome.

External link improvements

External links now work if the target file is already open. Previously this was not possible because of a mismatch in
the file close strengths.

49

h5py Documentation, Release 2.6.0

Thanks to

Many people, but especially:

• Matthieu Brucher

• Laurence Hole

• John Tyree

• Pierre de Buyl

• Matthew Brett

6.1.2 What’s new in h5py 2.3

Support for arbitrary vlen data

Variable-length data is no longer restricted to strings. You can use this feature to produce “ragged” arrays, whose
members are 1D arrays of variable length.

The implementation of special types was changed to use the NumPy dtype “metadata” field. This change should be
transparent, as access to special types is handled through h5py.special_dtype and h5py.check_dtype.

Improved exception messages

H5py has historically suffered from low-detail exception messages generated automatically by HDF5. While the
exception types in 2.3 remain identical to those in 2.2, the messages have been substantially improved to provide more
information as to the source of the error.

Examples:

ValueError: Unable to set extend dataset (Dimension cannot exceed the existing
→˓maximal size (new: 100 max: 1))

IOError: Unable to open file (Unable to open file: name = 'x3', errno = 2, error
→˓message = 'no such file or directory', flags = 0, o_flags = 0)

KeyError: "Unable to open object (Object 'foo' doesn't exist)"

Improved setuptools support

setup.py now uses setup_requires to make installation via pip friendlier.

Multiple low-level additions

Improved support for opening datasets via the low-level interface, by adding H5Dopen2 and many new property-list
functions.

Improved support for MPI features

Added support for retrieving the MPI communicator and info objects from an open file. Added boilerplate code to
allow compiling cleanly against newer versions of mpi4py.

50 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 2.6.0

Readonly files can now be opened in default mode

When opening a read-only file with no mode flags, now defaults to opening the file on RO mode rather than raising an
exception.

Single-step build for HDF5 on Windows

Building h5py on windows has typically been hamstrung by the need to build a compatible version of HDF5 first. A
new Paver-based system located in the “windows” distribution directory allows single-step compilation of HDF5 with
settings that are known to work with h5py.

For more, see:

https://github.com/h5py/h5py/tree/master/windows

Thanks to

• Martin Teichmann

• Florian Rathgerber

• Pierre de Buyl

• Thomas Caswell

• Andy Salnikov

• Darren Dale

• Robert David Grant

• Toon Verstraelen

• Many others who contributed bug reports

6.1.3 What’s new in h5py 2.2

Support for Parallel HDF5

On UNIX platforms, you can now take advantage of MPI and Parallel HDF5. Cython, mpi4py and an MPI-enabled
build of HDF5 are required.. See Parallel HDF5 in the documentation for details.

Support for Python 3.3

Python 3.3 is now officially supported.

Mini float support (issue #141)

Two-byte floats (NumPy float16) are supported.

HDF5 scale/offset filter

The Scale/Offset filter added in HDF5 1.8 is now available.

6.1. “What’s new” documents 51

https://github.com/h5py/h5py/tree/master/windows

h5py Documentation, Release 2.6.0

Field indexing is now allowed when writing to a dataset (issue #42)

H5py has long supported reading only certain fields from a dataset:

>>> dset = f.create_dataset('x', (100,), dtype=np.dtype([('a', 'f'), ('b', 'i')]))
>>> out = dset['a', 0:100:10]
>>> out.dtype
dtype('float32')

Now, field names are also allowed when writing to a dataset:

>>> dset['a', 20:50] = 1.0

Region references preserve shape (issue #295)

Previously, region references always resulted in a 1D selection, even when 2D slicing was used:

>>> dset = f.create_dataset('x', (10, 10))
>>> ref = dset.regionref[0:5,0:5]
>>> out = dset[ref]
>>> out.shape
(25,)

Shape is now preserved:

>>> out = dset[ref]
>>> out.shape
(5, 5)

Additionally, the shape of both the target dataspace and the selection shape can be determined via new methods on the
regionref proxy (now available on both datasets and groups):

>>> f.regionref.shape(ref)
(10, 10)
>>> f.regionref.selection(ref)
(5, 5)

Committed types can be linked to datasets and attributes

HDF5 supports “shared” named types stored in the file:

>>> f['name'] = np.dtype("int64")

You can now use these types when creating a new dataset or attribute, and HDF5 will “link” the dataset type to the
named type:

>>> dset = f.create_dataset('int dataset', (10,), dtype=f['name'])
>>> f.attrs.create('int scalar attribute', shape=(), dtype=f['name'])

move method on Group objects

It’s no longer necessary to move objects in a file by manually re-linking them:

52 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 2.6.0

>>> f.create_group('a')
>>> f['b'] = f['a']
>>> del f['a']

The method Group.move allows this to be performed in one step:

>>> f.move('a', 'b')

Both the source and destination must be in the same file.

6.1.4 What’s new in h5py 2.1

Dimension scales

H5py now supports the Dimension Scales feature of HDF5! Thanks to Darren Dale for implementing this. You can
find more information on using scales in the dimensionscales section of the docs.

Unicode strings allowed in attributes

Group, dataset and attribute names in h5py 2.X can all be given as unicode. Now, you can also store (scalar) unicode
data in attribute values as well:

>>> myfile.attrs['x'] = u"I'm a Unicode string!"

Storing Unicode strings in datasets or as members of compound types is not yet implemented.

Dataset size property

Dataset objects now expose a .size property which provides the total number of elements in the dataspace.

Dataset.value property is now deprecated.

The property Dataset.value, which dates back to h5py 1.0, is deprecated and will be removed in a later release.
This property dumps the entire dataset into a NumPy array. Code using .value should be updated to use NumPy
indexing, using mydataset[...] or mydataset[()] as appropriate.

Bug fixes

• Object and region references were sometimes incorrectly wrapped wrapped in a numpy.object_ instance
(issue 202)

• H5py now ignores old versions of Cython (<0.13) when building (issue 221)

• Link access property lists weren’t being properly tracked in the high level interface (issue 212)

• Race condition fixed in identifier tracking which led to Python crashes (issue 151)

• Highlevel objects will now complain if you try to bind them to the wrong HDF5 object types (issue 191)

• Unit tests can now be run after installation (issue 201)

6.1. “What’s new” documents 53

h5py Documentation, Release 2.6.0

6.1.5 What’s new in h5py 2.0

HDF5 for Python (h5py) 2.0 represents the first major refactoring of the h5py codebase since the project’s launch in
2008. Many of the most important changes are behind the scenes, and include changes to the way h5py interacts with
the HDF5 library and Python. These changes have substantially improved h5py’s stability, and make it possible to use
more modern versions of HDF5 without compatibility concerns. It is now also possible to use h5py with Python 3.

Enhancements unlikely to affect compatibility

• HDF5 1.8.3 through 1.8.7 now work correctly and are officially supported.

• Python 3.2 is officially supported by h5py! Thanks especially to Darren Dale for getting this working.

• Fill values can now be specified when creating a dataset. The fill time is H5D_FILL_TIME_IFSET for contigu-
ous datasets, and H5D_FILL_TIME_ALLOC for chunked datasets.

• On Python 3, dictionary-style methods like Group.keys() and Group.values() return view-like objects instead of
lists.

• Object and region references now work correctly in compound types.

• Zero-length dimensions for extendible axes are now allowed.

• H5py no longer attempts to auto-import ipython on startup.

• File format bounds can now be given when opening a high-level File object (keyword “libver”).

Changes which may break existing code

Supported HDF5/Python versions

• HDF5 1.6.X is no longer supported on any platform; following the release of 1.6.10 some time ago, this branch
is no longer maintained by The HDF Group.

• Python 2.6 or later is now required to run h5py. This is a consequence of the numerous changes made to h5py
for Python 3 compatibility.

• On Python 2.6, unittest2 is now required to run the test suite.

Group, Dataset and Datatype constructors have changed

In h5py 2.0, it is no longer possible to create new groups, datasets or named datatypes by passing names and settings
to the constructors directly. Instead, you should use the standard Group methods create_group and create_dataset.

The File constructor remains unchanged and is still the correct mechanism for opening and creating files.

Code which manually creates Group, Dataset or Datatype objects will have to be modified to use create_group or
create_dataset. File-resident datatypes can be created by assigning a NumPy dtype to a name (e.g. mygroup[“name”]
= numpy.dtype(‘S10’)).

Unicode is now used for object names

Older versions of h5py used byte strings to represent names in the file. Starting with version 2.0, you may use either
byte or unicode strings to create objects, but object names (obj.name, etc) will generally be returned as Unicode.

Code which may be affected:

54 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 2.6.0

• Anything which uses “isinstance” or explicit type checks on names, expecting “str” objects. Such checks should
be removed, or changed to compare to “basestring” instead.

• In Python 2.X, other parts of your application may complain if they are handed Unicode data which can’t be
encoded down to ascii. This is a general problem in Python 2.

File objects must be manually closed

With h5py 1.3, when File objects (or low-level FileID) objects went out of scope, the corresponding HDF5 file was
closed. This led to surprising behavior, especially when files were opened with the H5F_CLOSE_STRONG flag;
“losing” the original File object meant that all open groups and datasets suddenly became invalid.

Beginning with h5py 2.0, files must be manually closed, by calling the “close” method or by using the file object as a
context manager. If you forget to close a file, the HDF5 library will try to close it for you when the application exits.

Please note that opening the same file multiple times (i.e. without closing it first) continues to result in undefined
behavior.

Changes to scalar slicing code

When a scalar dataset was accessed with the syntax dataset[()], h5py incorrectly returned an ndarray. H5py now
correctly returns an array scalar. Using dataset[...] on a scalar dataset still returns an ndarray.

Array scalars now always returned when indexing a dataset

When using datasets of compound type, retrieving a single element incorrectly returned a tuple of values, rather than
an instance of numpy.void_ with the proper fields populated. Among other things, this meant you couldn’t do
things like dataset[index][field]. H5py now always returns an array scalar, except in the case of object
dtypes (references, vlen strings).

Reading object-like data strips special type information

In the past, reading multiple data points from dataset with vlen or reference type returned a Numpy array with a
“special dtype” (such as those created by h5py.special_dtype()). In h5py 2.0, all such arrays now have a
generic Numpy object dtype (numpy.dtype('O')). To get a copy of the dataset’s dtype, always use the dataset’s
dtype property directly (mydataset.dtype).

The selections module has been removed

Only numpy-style slicing arguments remain supported in the high level interface. Existing code which uses the se-
lections module should be refactored to use numpy slicing (and numpy.s_ as appropriate), or the standard C-style
HDF5 dataspace machinery.

The H5Error exception class has been removed (along with h5py.h5e)

All h5py exceptions are now native Python exceptions, no longer inheriting from H5Error. RuntimeError is raised if
h5py can’t figure out what exception is appropriate. . . every instance of this behavior is considered a bug. If you see
h5py raising RuntimeError please report it so we can add the correct mapping!

The old errors module (h5py.h5e) has also been removed. There is no public error-management API.

6.1. “What’s new” documents 55

h5py Documentation, Release 2.6.0

File .mode property is now either ‘r’ or ‘r+

Files can be opened using the same mode arguments as before, but now the property File.mode will always return ‘r’
(read-only) or ‘r+’ (read-write).

Long-deprecated dict methods have been removed

Certain ancient aliases for Group/AttributeManager methods (e.g. listnames) have been removed. Please use the
standard Python dict interface (Python 2 or Python 3 as appropriate) to interact with these objects.

Known issues

• Thread support has been improved in h5py 2.0. However, we still recommend that for your own sanity you use
locking to serialize access to files.

• There are reports of crashes related to storing object and region references. If this happens to you, please post
on the mailing list or contact the h5py author directly.

6.2 Bug Reports & Contributions

Contributions and bug reports are welcome from anyone! Some of the best features in h5py, including thread support,
dimension scales, and the scale-offset filter, came from user code contributions.

Since we use GitHub, the workflow will be familiar to many people. If you have questions about the process or about
the details of implementing your feature, always feel free to ask on the Google Groups list, either by emailing:

h5py@googlegroups.com

or via the web interface at:

https://groups.google.com/forum/#!forum/h5py

Anyone can post to this list. Your first message will be approved by a moderator, so don’t worry if there’s a brief delay.

This guide is divided into three sections. The first describes how to file a bug report.

The second describes the mechanics of how to submit a contribution to the h5py project; for example, how to create
a pull request, which branch to base your work on, etc. We assume you’re are familiar with Git, the version control
system used by h5py. If not, here’s a great place to start.

Finally, we describe the various subsystems inside h5py, and give technical guidance as to how to implement your
changes.

6.2.1 How to File a Bug Report

Bug reports are always welcome! The issue tracker is at:

http://github.com/h5py/h5py/issues

56 Chapter 6. Meta-info about the h5py project

mailto:h5py@googlegroups.com
https://groups.google.com/forum/#!forum/h5py
http://git-scm.com/book
http://github.com/h5py/h5py/issues

h5py Documentation, Release 2.6.0

If you’re unsure whether you’ve found a bug

Always feel free to ask on the mailing list (h5py at Google Groups). Discussions there are seen by lots of people and
are archived by Google. Even if the issue you’re having turns out not to be a bug in the end, other people can benefit
from a record of the conversation.

By the way, nobody will get mad if you file a bug and it turns out to be something else. That’s just how software
development goes.

What to include

When filing a bug, there are two things you should include. The first is the output of h5py.version.info:

>>> import h5py
>>> print h5py.version.info

The second is a detailed explanation of what went wrong. Unless the bug is really trivial, include code if you can,
either via GitHub’s inline markup:

```
import h5py
h5py.explode() # Destroyed my computer!

```

or by uploading a code sample to Github Gist.

6.2.2 How to Get Your Code into h5py

This section describes how to contribute changes to the h5py code base. Before you start, be sure to read the h5py
license and contributor agreement in “license.txt”. You can find this in the source distribution, or view it online at the
main h5py repository at GitHub.

The basic workflow is to clone h5py with git, make your changes in a topic branch, and then create a pull request at
GitHub asking to merge the changes into the main h5py project.

Here are some tips to getting your pull requests accepted:

1. Let people know you’re working on something. This could mean posting a comment in an open issue, or sending
an email to the mailing list. There’s nothing wrong with just opening a pull request, but it might save you time
if you ask for advice first.

2. Keep your changes focused. If you’re fixing multiple issues, file multiple pull requests. Try to keep the amount
of reformatting clutter small so the maintainers can easily see what you’ve changed in a diff.

3. Unit tests are mandatory for new features. This doesn’t mean hundreds (or even dozens) of tests! Just enough
to make sure the feature works as advertised. The maintainers will let you know if more are needed.

Clone the h5py repository

The best way to do this is by signing in to GitHub and cloning the h5py project directly. You’ll end up with a
new repository under your account; for example, if your username is yourname, the repository would be at http:
//github.com/yourname/h5py.

Then, clone your new copy of h5py to your local machine:

6.2. Bug Reports & Contributions 57

http://gist.github.com
http://github.com/yourname/h5py
http://github.com/yourname/h5py

h5py Documentation, Release 2.6.0

$ git clone http://github.com/yourname/h5py

Create a topic branch for your feature

If you’re fixing a bug, you’ll want to check out a branch against the appropriate stable branch. For example, to fix a
bug you found in version 2.1.3, you’ll want to check out against branch “2.1”:

$ git checkout -b bugfix 2.1

If you’re contributing a new feature, it’s appropriate to develop against the “master” branch, so you would instead do:

$ git checkout -b newfeature master

The exact name of the branch can be anything you want. For bug fixes, one approach is to put the issue number in the
branch name.

Implement the feature!

You can implement the feature as a number of small changes, or as one big commit; there’s no project policy. Double-
check to make sure you’ve included all your files; run git status and check the output.

Push your changes back and open a pull request

Push your topic branch back up to your GitHub clone:

$ git push origin newfeature

Then, create a pull request based on your topic branch.

Work with the maintainers

Your pull request might be accepted right away. More commonly, the maintainers will post comments asking you to
fix minor things, like add a few tests, clean up the style to be PEP-8 compliant, etc.

The pull request page also shows whether the project builds correctly, using Travis CI. Check to see if the build
succeeded (takes about 5 minutes), and if not, try to modify your changes to make it work.

When making changes after creating your pull request, just add commits to your topic branch and push them to your
GitHub repository. Don’t try to rebase or open a new pull request! We don’t mind having a few extra commits in the
history, and it’s helpful to keep all the history together in one place.

6.2.3 How to Modify h5py

This section is a little more involved, and provides tips on how to modify h5py. The h5py package is built in layers.
Starting from the bottom, they are:

1. The HDF5 C API (provided by libhdf5)

2. Auto-generated Cython wrappers for the C API (api_gen.py)

3. Low-level interface, written in Cython, using the wrappers from (2)

4. High-level interface, written in Python, with things like h5py.File.

58 Chapter 6. Meta-info about the h5py project

https://help.github.com/articles/creating-a-pull-request

h5py Documentation, Release 2.6.0

5. Unit test code

Rather than talk about the layers in an abstract way, the parts below are guides to adding specific functionality to
various parts of h5py. Most sections span at least two or three of these layers.

Adding a function from the HDF5 C API

This is one of the most common contributed changes. The example below shows how one would add the function
H5Dget_storage_size, which determines the space on disk used by an HDF5 dataset. This function is already
partially wrapped in h5py, so you can see how it works.

It’s recommended that you follow along, if not by actually adding the feature then by at least opening the various files
as we work through the example.

First, get ahold of the function signature; the easiest place for this is at the online HDF5 Reference Manual. Then, add
the function’s C signature to the file api_functions.txt:

hsize_t H5Dget_storage_size(hid_t dset_id)

This particular signature uses types (hsize_t, hid_t) which are already defined elsewhere. But if the function
you’re adding needs a struct or enum definition, you can add it using Cython code to the file api_types_hdf5.
pxd.

The next step is to add a Cython function or method which calls the function you added. The h5py modules follow the
naming convention of the C API; functions starting with H5D are wrapped in h5d.pyx.

Opening h5d.pyx, we notice that since this function takes a dataset identifier as the first argument, it belongs as a
method on the DatasetID object. We write a wrapper method:

def get_storage_size(self):
""" () => LONG storage_size

Determine the amount of file space required for a dataset. Note
this only counts the space which has actually been allocated; it
may even be zero.

"""
return H5Dget_storage_size(self.id)

The first line of the docstring gives the method signature. This is necessary because Cython will use a “generic”
signature like method(*args, **kwds) when the file is compiled. The h5py documentation system will extract
the first line and use it as the signature.

Next, we decide whether we want to add access to this function to the high-level interface. That means users of the
top-level h5py.Dataset object will be able to see how much space on disk their files use. The high-level interface
is implemented in the subpackage h5py._hl, and the Dataset object is in module dataset.py. Opening it up, we
add a property on the Dataset object:

@property
def storagesize(self):

""" Size (in bytes) of this dataset on disk. """
return self.id.get_storage_size()

You’ll see that the low-level DatasetID object is available on the high-level Dataset object as obj.id. This is
true of all the high-level objects, like File and Group as well.

Finally (and don’t skip this step), we write unit tests for this feature. Since the feature is ultimately exposed at
the high-level interface, it’s OK to write tests for the Dataset.storagesize property only. Unit tests for the
high-level interface are located in the “tests” subfolder, right near dataset.py.

6.2. Bug Reports & Contributions 59

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html

h5py Documentation, Release 2.6.0

It looks like the right file is test_dataset.py. Unit tests are implemented as methods on custom unittest.
UnitTest subclasses; each new feature should be tested by its own new class. In the test_dataset module, we
see there’s already a subclass called BaseDataset, which implements some simple set-up and cleanup methods and
provides a h5py.File object as obj.f. We’ll base our test class on that:

class TestStorageSize(BaseDataset):

"""
Feature: Dataset.storagesize indicates how much space is used.

"""

def test_empty(self):
""" Empty datasets take no space on disk """
dset = self.f.create_dataset("x", (100,100))
self.assertEqual(dset.storagesize, 0)

def test_data(self):
""" Storage size is correct for non-empty datasets """
dset = self.f.create_dataset("x", (100,), dtype='uint8')
dset[...] = 42
self.assertEqual(dset.storagesize, 100)

This set of tests would be adequate to get a pull request approved. We don’t test every combination under the sun
(different ranks, datasets with more than 2**32 elements, datasets with the string “kumquat” in the name. . .), but the
basic, commonly encountered set of conditions.

To build and test our changes, we have to do a few things. First of all, run the file api_gen.py to re-generate the
Cython wrappers from api_functions.txt:

$ python api_gen.py

Then build the project, which recompiles h5d.pyx:

$ python setup.py build

Finally, run the test suite, which includes the two methods we just wrote:

$ python setup.py test

If the tests pass, the feature is ready for a pull request.

Adding a function only available in certain versions of HDF5

At the moment, h5py must be backwards-compatible all the way back to HDF5 1.8.4. Starting with h5py 2.2.0, it’s
possible to conditionally include functions which only appear in newer versions of HDF5. It’s also possible to mark
functions which requre Parallel HDF5. For example, the function H5Fset_mpi_atomicity was introduced in
HDF5 1.8.9 and requires Parallel HDF5. Specifiers before the signature in api_functions.txt communicate
this:

MPI 1.8.9 herr_t H5Fset_mpi_atomicity(hid_t file_id, hbool_t flag)

You can specify either, both or none of “MPI” or a version number in “X.Y.Z” format.

In the Cython code, these show up as “preprocessor” defines MPI and HDF5_VERSION. So the low-level implemen-
tation (as a method on h5py.h5f.FileID) looks like this:

60 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 2.6.0

IF MPI and HDF5_VERSION >= (1, 8, 9):

def set_mpi_atomicity(self, bint atomicity):
""" (BOOL atomicity)

For MPI-IO driver, set to atomic (True), which guarantees sequential
I/O semantics, or non-atomic (False), which improves performance.

Default is False.

Feature requires: 1.8.9 and Parallel HDF5
"""
H5Fset_mpi_atomicity(self.id, <hbool_t>atomicity)

High-level code can check the version of the HDF5 library, or check to see if the method is present on FileID objects.

6.3 FAQ

6.3.1 What datatypes are supported?

Below is a complete list of types for which h5py supports reading, writing and creating datasets. Each type is mapped
to a native NumPy type.

Fully supported types:

Type Precisions Notes
Integer 1, 2, 4 or 8 byte, BE/LE, signed/unsigned
Float 2, 4, 8, 12, 16 byte, BE/LE
Complex 8 or 16 byte, BE/LE Stored as HDF5 struct
Compound Arbitrary names and offsets
Strings (fixed-length) Any length
Strings (variable-length) Any length, ASCII or Unicode
Opaque (kind ‘V’) Any length
Boolean NumPy 1-byte bool Stored as HDF5 enum
Array Any supported type
Enumeration Any NumPy integer type Read/write as integers
References Region and object
Variable length array Any supported type See Special Types

Unsupported types:

Type Status
HDF5 “time” type
NumPy “U” strings No HDF5 equivalent
NumPy generic “O” Not planned

6.3. FAQ 61

h5py Documentation, Release 2.6.0

6.3.2 What compression/processing filters are supported?

Filter Function Availability
DEFLATE/GZIP Standard HDF5 compression All platforms
SHUFFLE Increase compression ratio All platforms
FLETCHER32 Error detection All platforms
Scale-offset Integer/float scaling and truncation All platforms
SZIP Fast, patented compression for

int/float • UNIX: if supplied with
HDF5.

• Windows: read-only

LZF Very fast compression, all types Ships with h5py, C source available

6.3.3 What file drivers are available?

A number of different HDF5 “drivers”, which provide different modes of access to the filesystem, are accessible in
h5py via the high-level interface. The currently supported drivers are:

Driver Purpose Notes
sec2 Standard optimized driver Default on UNIX/Windows
stdio Buffered I/O using stdio.h
core In-memory file (optionally backed to disk)
family Multi-file driver
mpio Parallel HDF5 file access

6.3.4 What’s the difference between h5py and PyTables?

The two projects have different design goals. PyTables presents a database-like approach to data storage, providing
features like indexing and fast “in-kernel” queries on dataset contents. It also has a custom system to represent data
types.

In contrast, h5py is an attempt to map the HDF5 feature set to NumPy as closely as possible. For example, the
high-level type system uses NumPy dtype objects exclusively, and method and attribute naming follows Python and
NumPy conventions for dictionary and array access (i.e. “.dtype” and “.shape” attributes for datasets, group[name]
indexing syntax for groups, etc).

Underneath the “high-level” interface to h5py (i.e. NumPy-array-like objects; what you’ll typically be using) is a large
Cython layer which calls into C. This “low-level” interface provides access to nearly all of the HDF5 C API. This
layer is object-oriented with respect to HDF5 identifiers, supports reference counting, automatic translation between
NumPy and HDF5 type objects, translation between the HDF5 error stack and Python exceptions, and more.

This greatly simplifies the design of the complicated high-level interface, by relying on the “Pythonicity” of the C API
wrapping.

There’s also a PyTables perspective on this question at the PyTables FAQ.

6.3.5 Does h5py support Parallel HDF5?

Starting with version 2.2, h5py supports Parallel HDF5 on UNIX platforms. mpi4py is required, as well as an
MPIO-enabled build of HDF5. Check out Parallel HDF5 for details.

62 Chapter 6. Meta-info about the h5py project

http://alfven.org/lzf
http://www.pytables.org/FAQ.html#how-does-pytables-compare-with-the-h5py-project

h5py Documentation, Release 2.6.0

6.3.6 Variable-length (VLEN) data

Starting with version 2.3, all supported types can be stored in variable-length arrays (previously only variable-length
byte and unicode strings were supported) See Special Types for use details. Please note that since strings in HDF5 are
encoded as ASCII or UTF-8, NUL bytes are not allowed in strings.

6.3.7 Enumerated types

HDF5 enumerated types are supported as. As NumPy has no native enum type, they are treated on the Python side as
integers with a small amount of metadata attached to the dtype.

6.3.8 NumPy object types

Storage of generic objects (NumPy dtype “O”) is not implemented and not planned to be implemented, as the design
goal for h5py is to expose the HDF5 feature set, not add to it. However, objects picked to the “plain-text” protocol
(protocol 0) can be stored in HDF5 as strings.

6.3.9 Appending data to a dataset

The short response is that h5py is NumPy-like, not database-like. Unlike the HDF5 packet-table interface (and PyTa-
bles), there is no concept of appending rows. Rather, you can expand the shape of the dataset to fit your needs. For
example, if I have a series of time traces 1024 points long, I can create an extendable dataset to store them:

>>> dset = myfile.create_dataset("MyDataset", (10, 1024), maxshape=(None, 1024))
>>> dset.shape
(10,1024)

The keyword argument “maxshape” tells HDF5 that the first dimension of the dataset can be expanded to any size,
while the second dimension is limited to a maximum size of 1024. We create the dataset with room for an initial
ensemble of 10 time traces. If we later want to store 10 more time traces, the dataset can be expanded along the first
axis:

>>> dset.resize(20, axis=0) # or dset.resize((20,1024))
>>> dset.shape
(20, 1024)

Each axis can be resized up to the maximum values in “maxshape”. Things to note:

• Unlike NumPy arrays, when you resize a dataset the indices of existing data do not change; each axis grows or
shrinks independently

• The dataset rank (number of dimensions) is fixed when it is created

6.3.10 Unicode

As of h5py 2.0.0, Unicode is supported for file names as well as for objects in the file. When object names are read,
they are returned as Unicode by default.

However, HDF5 has no predefined datatype to represent fixed-width UTF-16 or UTF-32 (NumPy format) strings.
Therefore, the NumPy ‘U’ datatype is not supported.

6.3. FAQ 63

h5py Documentation, Release 2.6.0

6.3.11 Development

Building from Git

We moved to GitHub in December of 2012 (http://github.com/h5py/h5py).

We use the following conventions for branches and tags:

• master: integration branch for the next minor (or major) version

• 2.0, 2.1, 2.2, etc: bugfix branches for released versions

• tags 2.0.0, 2.0.1, etc: Released bugfix versions

To build from a Git checkout:

Clone the project:

$ git clone https://github.com/h5py/h5py.git
$ cd h5py

(Optional) Choose which branch to build from (e.g. a stable branch):

$ git checkout 2.1

Build the project. If given, /path/to/hdf5 should point to a directory containing a compiled, shared-library build of
HDF5 (containing things like “include” and “lib”):

$ python setup.py build [--hdf5=/path/to/hdf5]

(Optional) Run the unit tests:

$ python setup.py test

Report any failing tests to the mailing list (h5py at googlegroups), or by filing a bug report at GitHub.

6.4 Licenses and legal info

6.4.1 Copyright Notice and Statement for the h5py Project

Copyright (c) 2008 Andrew Collette and contributors
http://h5py.alfven.org
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

a. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.

64 Chapter 6. Meta-info about the h5py project

http://github.com/h5py/h5py

h5py Documentation, Release 2.6.0

c. Neither the name of the author nor the names of contributors may
be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.4.2 HDF5 Copyright Statement

HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 2006-2007 by The HDF Group (THG).

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA)
at the University of Illinois, Fortner Software, Unidata Program
Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly
and Mark Adler (gzip), and Digital Equipment Corporation (DEC).

Redistribution and use in source and binary forms, with or without
modification, are permitted for any purpose (including commercial
purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions, and the following
disclaimer in the documentation and/or materials provided with the
distribution.

3. In addition, redistributions of modified forms of the source or
binary code must carry prominent notices stating that the original
code was changed and the date of the change.

4. All publications or advertising materials mentioning features or
use of this software are asked, but not required, to acknowledge that
it was developed by The HDF Group and by the National Center for
Supercomputing Applications at the University of Illinois at
Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University,
nor the name of any Contributor may be used to endorse or promote
products derived from this software without specific prior written
permission from THG, the University, or the Contributor, respectively.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP (THG) AND THE

6.4. Licenses and legal info 65

h5py Documentation, Release 2.6.0

CONTRIBUTORS "AS IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED. In no event shall THG or the Contributors be liable for any
damages suffered by the users arising out of the use of this software,
even if advised of the possibility of such damage.

Portions of HDF5 were developed with support from the University of
California, Lawrence Livermore National Laboratory (UC LLNL). The
following statement applies to those portions of the product and must
be retained in any redistribution of source code, binaries,
documentation, and/or accompanying materials:

This work was partially produced at the University of California,
Lawrence Livermore National Laboratory (UC LLNL) under contract
no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy
(DOE) and The Regents of the University of California (University) for
the operation of UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by
an agency of the United States Government. Neither the United States
Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately-
owned rights. Reference herein to any specific commercial products,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

6.4.3 PyTables Copyright Statement

Copyright Notice and Statement for PyTables Software Library and Utilities:

Copyright (c) 2002, 2003, 2004 Francesc Altet
Copyright (c) 2005, 2006, 2007 Carabos Coop. V.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

a. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.

c. Neither the name of the Carabos Coop. V. nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

66 Chapter 6. Meta-info about the h5py project

h5py Documentation, Release 2.6.0

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.4.4 stdint.h (Windows version) License

Copyright (c) 2006-2008 Alexander Chemeris

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6.4.5 Python license

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python Python 2.7.5 software in source or binary
form and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python Python 2.7.5 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyright 2001-2013 Python Software
Foundation; All Rights Reserved” are retained in Python Python 2.7.5 alone or in any derivative version prepared
by Licensee.

6.4. Licenses and legal info 67

h5py Documentation, Release 2.6.0

3. In the event Licensee prepares a derivative work that is based on or incorporates Python Python 2.7.5 or any
part thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python Python 2.7.5.

4. PSF is making Python Python 2.7.5 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON Python 2.7.5
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON Python 2.7.5
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON Python 2.7.5, OR ANY DERIVATIVE
THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint
venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python Python 2.7.5, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

68 Chapter 6. Meta-info about the h5py project

Index

Symbols
__contains__() (AttributeManager method), 27
__contains__() (Group method), 18
__delitem__() (AttributeManager method), 27
__getitem__() (AttributeManager method), 27
__getitem__() (Dataset method), 25
__getitem__() (Group method), 18
__iter__() (AttributeManager method), 27
__iter__() (Group method), 17
__setitem__() (AttributeManager method), 27
__setitem__() (Dataset method), 25
__setitem__() (Group method), 18

A
astype() (Dataset method), 26
AttributeManager (built-in class), 27
attrs (Dataset attribute), 27
attrs (Group attribute), 20

C
check_dtype() (built-in function), 32
chunks (Dataset attribute), 26
close() (File method), 15
compression (Dataset attribute), 26
compression_opts (Dataset attribute), 26
copy() (Group method), 19
create() (AttributeManager method), 28
create_dataset() (Group method), 19
create_group() (Group method), 19

D
Dataset (built-in class), 25
dims (Dataset attribute), 26
driver (File attribute), 15
dtype (Dataset attribute), 26

E
ExternalLink (built-in class), 21

F
File (built-in class), 14
file (Dataset attribute), 27
file (Group attribute), 20
filename (ExternalLink attribute), 21
filename (File attribute), 15
fillvalue (Dataset attribute), 26
fletcher32 (Dataset attribute), 26
flush() (File method), 15

G
get() (AttributeManager method), 28
get() (Group method), 18
Group (built-in class), 17

H
HardLink (built-in class), 21

I
id (Dataset attribute), 27
id (File attribute), 15
id (Group attribute), 20
items() (AttributeManager method), 28
items() (Group method), 18
iteritems() (AttributeManager method), 28
iteritems() (Group method), 18
iterkeys() (AttributeManager method), 28
iterkeys() (Group method), 18
itervalues() (AttributeManager method), 28
itervalues() (Group method), 18

K
keys() (AttributeManager method), 28
keys() (Group method), 18

L
len() (Dataset method), 26
libver (File attribute), 15

69

h5py Documentation, Release 2.6.0

M
maxshape (Dataset attribute), 26
mode (File attribute), 15
modify() (AttributeManager method), 28
move() (Group method), 19

N
name (Dataset attribute), 27
name (Group attribute), 20

P
parent (Dataset attribute), 27
parent (Group attribute), 20
path (ExternalLink attribute), 21
path (SoftLink attribute), 21

R
read_direct() (Dataset method), 25
ref (Dataset attribute), 27
ref (Group attribute), 20
regionref (Dataset attribute), 27
regionref (Group attribute), 20
require_dataset() (Group method), 20
require_group() (Group method), 19
resize() (Dataset method), 26

S
scaleoffset (Dataset attribute), 26
shape (Dataset attribute), 26
shuffle (Dataset attribute), 26
size (Dataset attribute), 26
SoftLink (built-in class), 21
special_dtype() (built-in function), 32

U
userblock_size (File attribute), 15

V
values() (AttributeManager method), 28
values() (Group method), 18
visit() (Group method), 18
visititems() (Group method), 19

70 Index

	Where to start
	Other resources
	Introductory info
	High-level API reference
	Advanced topics
	Meta-info about the h5py project

